[1] T.F. Wang, M.W. Nolte, B.H. Shanks, Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical, Green Chem. 16(2014) 548-572.[2] H.B. Zhao, J.H. Holladay, H. Brown, Z.C. Zhang, Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural, Science 316(2007) 1597-1600.[3] S.Q. Hu, Z.F. Zhang, J.L. Song, Y.X. Zhou, B.X. Han, Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid, Green Chem. 11(2009) 1746-1749.[4] K. Hiroshi, N. Masaru, M. Nobuyuki, In situ kinetic study on hydrothermal transformation of D-glucose into 5-hydroxymethylfurfural through D-fructose with 13C NMR, J. Phys. Chem. A 115(2011) 14013-14021.[5] G.W. Huber, S. Iborra, A. Corma, Synthesis of transportation fuels from biomass:Chemistry, catalysts, and engineering, Chem. Rev. 106(2006) 4044-4098.[6] Y. Yang, W. Liu, N. Wang, H. Wang, W. Li, Z. Song, Effect of different ionic liquids on 5-hydroxymethylfurfural preparation from glucose in DMA over AlCl3:Experimental and theoretical study, Chin. J. Chem. 33(2015) 583-588.[7] A.H. Jadhav, H. Kim, I.T. Hwang, Efficient selective dehydration of fructose and sucrose into 5-hydroxymethylfurfural (HMF) using dicationic room temperature ionic liquids as a catalyst, Catal. Commun. 21(2012) 96-103.[8] J.B. Binder, A.V. Cefali, J.J. Blank, R.T. Raines, Mechanistic insights on the conversion of sugars into 5-hydroxymethylfurfural, Energy Environ. Sci. 3(2010) 765-771.[9] H. Yan, Y. Yang, D. Tong, X. Xiang, C. Hu, Catalytic conversion of glucose to 5-hydroxymethylfurfural over SO42-/ZrO2 and SO42-/ZrO2-Al2O3 solid acid catalysts, Catal. Commun. 10(2009) 1558-1563.[10] R.B. Deval, R.S. Assary, E. Nikolla, M. Moliner, Y.R. Leshkov, S. Hwang, A. Palsdottir, D. Silverman, R.F. Lobo, L.A. Curtiss, M.E. Davis, Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites, Proc. Natl. Acad. Sci. U. S. A. 109(2012) 9727-9732.[11] M. Moliner, Y. Roman-Leshkov, M.E. Davis, Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water, Proc. Natl. Acad. Sci. 107(2010) 6164-6168.[12] I.J. Morales, J.S. González, A.J. López, P.M. Torres, Glucose dehydration to 5-hydroxymethylfurfural on zirconium containing mesoporous MCM-41 silica catalysts, Fuel 118(2014265-271.[13] Y. Zhang, J. Wang, X. Li, X. Liu, Y. Xia, Direct conversion of biomass-derived carbohydrates to 5-hydroxymethylfurural over water-tolerant niobium-based catalysts, Fuel 139(2015) 301-307.[14] Q. Xu, Z. Zhu, Y. Tian, J. Deng, J. Shi, Y. Fu, Sn-MCM-41 as efficient catalyst for the conversion of glucose into 5-hydroxymethylfurfural in ionic liquids, BioResoures 9(1) (2014) 303-315.[15] I.J. Morales, M.M. Recio, J.S. González, P.M. Torres, A.J. López, Production of 5-hydroxymethylfurfural from glucose using aluminium doped MCM-41 silica as acid catalyst, Appl. Catal. B Environ. 164(2015) 70-76.[16] Q. Pan, A. Ramanathan, W.K. Snavely, R.V. Chaudhari, B. Subramaniam, Synthesis and dehydration activity of novel Lewis acidic ordered mesoporous silicate:Zr-KIT-6, Ind. Eng. Chem. Res. 52(2013) 15481-15487.[17] L. Hu, X. Tang, Z. Wu, L. Lin, J. Xu, Magnetic lignin-derived carbonaceous catalyst for the dehydration of fructose into 5-hydroxymethylfurfural in dimethylsulfoxide, Chem. Eng. J. 263(2015299-308.[18] F. Guo, Z. Fang, T.J. Zhou, Conversion of fructose and glucose into 5-hydroxymethylfurfural with lignin-derived carbonaceous catalyst under microwave irradiation in dimethyl sulfoxide-ionic liquid mixtures, Bioresour. Technol. 112(2012) 313-318.[19] M.Moreno-Recio, J.Santamaría-González, P.Maireles-Torres,BrönstedandLewisacid ZSM-5 zeolites for the catalytic dehydration of glucose into 5-hydroxymethylfurfural, Chem. Eng. J. 303(201622-30.[20] Z. Zhang, J. Song, B. Han, Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids, Chem. Rev. 117(2017) 6834-6880.[21] Q. Hou, M. Zhen, L. Liu, Y. Chen, F. Huang, Tin phosphate as a heterogeneous catalyst for efficient dehydration of glucose into 5-hydroxymethylfurfural in ionic liquid, Appl. Catal. B Environ. 224(2017) 183-189.[22] J. Wang, J. Ren, X. Liu, Y. Wang, High yield production and purification of 5-hydroxymethylfurfural, AICHE J. 59(20132558-2566.[23] J. Zou, D. Cao, W.T. Tao, S.Y. Zhang, L. Cui, F.L. Zeng, W.J. Ca, Sorbitol dehydration into isosorbide over a cellulose-derived solid acid catalyst, RSC Adv. 6(2016) 49528-49536.[24] F. Kleitz, S.H. Choi, R. Ryoo, Cubic Ia3d large mesoporous silica:Synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes, Chem. Commun. (20032136-2137.[25] M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic-inorganic nanocomposite materials, Chem. Mater. 13(2001) 3169-3183.[26] M.S. Morey, G.D. Stucky, Isomorphic substitution and postsynthesis incorporation of zirconium into MCM-48 mesoporous silica, J. Phys. Chem. B 103(19992037-2041.[27] D.M. Do, S. Jaenicke, G.K. Chuah, Mesoporous Zr-SBA-15 as a green solid acid catalyst for the Prins reaction, Catal. Sci. Technol. 2(2012) 1417-1424.[28] J. Iglesias, J.A. Melero, L.F. Bautista, G. Morales, R.S. Vázquez, M.T. Andreola, A.L. Fernández, Zr-SBA-15 as an efficient acid catalyst for FAME production from crude palm oil, Catal. Today 167(2011) 46-55.[29] C. Morant, J.M. Sanz, L. Galan, L. Soriano, F. Rueda, An XPS study of the interaction of oxygen with zirconium, Surf. Sci. 218(1989) 331-345.[30] S. Gopinath, P.S.M. Kumar, K.A.Y. Arafath, K.V. Thiruvengadaravi, S. Sivanesan, Efficient mesoporous SO42-/Zr-KIT-6 solid acid catalyst for green diesel production from esterification of oleic acid, Fuel 203(2017) 488-500.[31] L. Kumaresan, A. Prabhu, M. Palanichamy, V. Murugesan, Mesoporous Ti-KIT-6 molecular sieves:Their catalytic activity in the epoxidation of cyclohexene, J. Taiwan Inst. Chem. Eng. 41(2010) 670-675.[32] S. Damyanova, P. Grange, B. Delmon, Surface characterization of zirconia-coated alumina and silica carriers, J. Catal. 168(1997) 421-430.[33] Y. Baba, T.A. Sasaki, Application of X-ray-induced auger electron spectroscopy to state analyses of hydrogen implanted in Y, Zr and Nb metals, Surf. Interface Anal. 6(1984) 171-173.[34] L. Kmar, D.D. Sarma, S. Krummacher, XPS study of the room temperature surface oxidation of zirconium and its binary alloys with tin, chromium and iron, Appl. Surf. Sci. 32(1988) 309-319.[35] M. Hussain, P. Akhter, N. Russo, G. Saracco, Novel Ti-KIT-6 material for the photocatalytic reduction of carbon dioxide to methane, Catal. Commun. 36(2013) 58-62.[36] J. Kim, B. Shim, G. Lee, J. Han, M.K. Ji, Synthesis of high-energy-density fuel over mesoporous aluminosilicate catalysts, Catal. Today 303(2018) 71-76.[37] D. Stoši?, S. Bennici, V. Raki?, A. Auroux, CeO2-Nb2O5, mixed oxide catalysts:Preparation, characterization and catalytic activity in fructose dehydration reaction, Catal. Today 192(2012) 160-168.[38] H. Xin, T. Zhang, W. Li, M. Su, S. Li, Dehydration of glucose to 5-hydroxymethylfurfural and 5-ethoxymethylfurfural by combining Lewis and Brønsted acid, RSC Adv. 7(2017) 41546-41551.[39] L. Li, J. Ding, J.G. Jiang, Z. Zhu, P. Wu, One-pot synthesis of 5-hydroxymethylfurfural from glucoseusingbifunctional[Sn,Al]-betacatalysts, Chin. J. Catal.36(2015)820-828. |