[1] M. Liu, C.J. Li, Catalytic Fehling's reaction:An efficient aerobic oxidation of aldehyde catalyzed by copper in water, Angew. Chem. 128(36) (2016) 10964-10968. [2] W. Jiang, H. Jia, Z. Zheng, et al., Catalytic oxidative desulfurization of fuels in acidic deep eutectic solvents with[(C6H13)3P(C14H29)]3PMo12O40 as a catalyst, Pet. Sci. 15(4) (2018) 841-848. [3] J.J. Li, J. Wei, J. Cai, et al., pH effect on oxidation of hydrogen peroxide on Au(111) electrode in alkaline solutions, Chin. J. Chem. Phys. 31(6) (2018) 779-783. [4] H. Yu, S. Ru, G. Dai, et al., An efficient iron(III)-catalyzed aerobic oxidation of aldehydes in water for the green preparation of carboxylic acids, Angew. Chem. 56(14) (2017) 3867-3871. [5] S.E. Kelly, C.J. von Ruhland, The use of metal-catalyzed oxidation to suppress background staining caused by marker amplification reagents and the effects of this oxidation on the stability of antibody-antigen complexes in immunohistochemistry, Biotech. Histochem. 94(1) (2019) 36-41. [6] M. Pelucchi, S. Namysl, E. Ranzi, et al., An experimental and kinetic modelling study of n-C4C6 aldehydes oxidation in a jet-stirred reactor, Proc. Combust. Inst. 37(1) (2019) 389-397. [7] J.B. Zou, W. Li, L.L. Ye, et al., Exploring the low-temperature oxidation chemistry of cyclohexane in a jet-stirred reactor:An experimental and kinetic modeling study, Chin. J. Chem. Phys. 31(4) (2018) 537-546. [8] J. Wang, X. Liu, Z. Jia, et al., Highly crystalline polyesters synthesized from furandicarboxylic acid (FDCA):Potential bio-based engineering plastic, Eur. Polym. J. 109(2018) 379-390. [9] T. Takemoto, K. Yasuda, S.V. Ley, Solid-supported reagents for the oxidation of aldehydes to carboxylic acids, Synlett. 2001(10) (2001) 1555-1556. [10] C.M. Cai, T. Zhang, R. Kumar, et al., Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass, J. Chem. Technol. Biotechnol. 89(1) (2014) 2-10. [11] B. Ganem, R.P. Heggs, A.J. Biloski, et al., A new oxidation of aldehydes to carboxylic acids, Tetrahedron Lett. 21(8) (1980) 685-688. [12] S.O. Nwaukwa, P.M. Keehn, The oxidation of aldehydes to acids with calcium hypochlorite[Ca(OCl)2], Tetrahedron Lett. 23(31) (1982) 3131-3134. [13] C.Q. Ruan, M. Strømme, A. Mihranyan, et al., Favored surface-limited oxidation of cellulose with Oxone® in water, RSC Adv. 7(64) (2017) 40600-40607. [14] E. Sankari Devi, A. Alanthadka, A. Tamilselvi, et al., Metal-free oxidative amidation of aldehydes with aminopyridines employing aqueous hydrogen peroxide, Org. Biomol. Chem. 14(35) (2016) 8228-8231. [15] L. Liu, S. Feng, Ligand-free Cu(ii)-mediated aerobic oxidations of aldehyde hydrazones leading to N,N[prime or minute]-diacylhydrazines and 1,3,4-oxadiazoles, Org. Biomol. Chem. 15(2017) 2585-2592. [16] Z. Zand, M.M. Najafpour, R. Bagheri, et al., Nanosized silver bromide:An efficient catalyst for alcohol oxidation in the presence of a multinuclear silver complex, New J. Chem. 42(14) (2018) 12172-12179. [17] X.S. Ning, M.M. Wang, C.Z. Yao, et al., Tert-butyl nitrite:Organic redox cocatalyst for aerobic aldehyde-selective Wacker-Tsuji oxidation, Org. Lett. 18(11) (2016) 2700-2703. [18] C. Santi, R.G. Jacob, B. Monti, et al., Water and aqueous mixtures as convenient alternative media for organoselenium chemistry, Molecules 21(11) (2016) 1482. [19] X. Jiang, J. Zhang, S. Ma, Iron, catalysis for room-temperature aerobic oxidation of alcohols to carboxylic acids, J. Am. Chem. Soc. 138(27) (2016) 8344-8347. [20] M. Brzaszcz, K. Kloc, M. Maposah, et al., Selenium(IV) oxide catalyzed oxidation of aldehydes to carboxylic acids with hydrogen peroxide, Synth. Commun. 30(24) (2000) 4425-4434. [21] Q. Tian, D. Shi, Y. Sha, CuO and Ag2O/CuO catalyzed oxidation of aldehydes to the corresponding carboxylic acids by molecular oxygen, Molecules. 13(4) (2008) 948. [22] V.R. Choudhary, D.K. Dumbre, Solvent-free selective oxidation of primary alcoholsto-aldehydes and aldehydes-to-carboxylic acids by molecular oxygen over MgOsupported nano-gold catalyst, Catal. Commun. 13(1) (2011) 82-86. [23] P. Malik, D. Chakraborty, Bi2O3-catalyzed oxidation of aldehydes with t-BuOOH, Tetrahedron Lett. 51(27) (2010) 3521-3523. [24] M. Lim, C.M. Yoon, G. An, H. Rhee, Environmentally benign oxidation reaction of aldehydes to their corresponding carboxylic acids using Pd/C with NaBH4 and KOH, Tetrahedron Lett. 48(22) (2007) 3835-3839. [25] J. Che, M. Hao, W. Yi, et al., Selective suppression of toluene formation in solvent-free benzyl alcohol oxidation using supported Pd-Ni bimetallic nanoparticles, Chin. J. Catal. 38(11) (2017) 1870-1879. [26] M.H. Huang, B.Y. Jin, L.H. Zhao, et al., Preparation and characterization of Pt-Ni-SnO2/C for ethanol oxidation reaction, Acta Phys. -Chim. Sin. 33(3) (2017) 563-572. [27] A. Corma, M.E. Domine, Gold supported on a mesoporous CeO2 matrix as an efficient catalyst in the selective aerobic oxidation of aldehydes in the liquid phase, Chem. Commun. (32) (2005) 4042-4044. [28] S. Zhang, C. Miao, D. Xu, et al., CuI/N4 ligand/TEMPO derivatives:A mild and highly efficient system for aerobic oxidation of primary alcohols, Chin. J. Catal. 35(11) (2014) 1864-1870. [29] M. Hajjami, F. Ghorbani, S. Rahimipanah, et al., Efficient preparation of Zr(IV)-salen grafted mesoporous MCM-41 catalyst for chemoselective oxidation of sulfides to sulfoxides and Knoevenagel condensation reactions, Chin. J. Catal. 36(11) (2015) 1852-1860. [30] R. Luo, H.R. Liang, X.L. Zheng, et al., Highly efficient catalytic system for the formation of dialdehydes from dicyclopentadiene hydroformylation, Catal. Commun. 50(2014) 29-33. [31] L. Wang, Y. Ma, S. Qing, et al., Magnetically separable Fe3O4 supported Co-Rh bimetallic catalysts for dicyclopentadiene hydroformylation to value-added fine chemicals, Energy Environ. Focus 4(4) (2015) 334-339. [32] V. Bondaletov, L. Bondaletova, N. Van Thanh, et al., Oxidation of petroleum resin based on dicyclopentadiene fraction, Procedia Chem. 15(2015) 103-108. [33] H.J. Hwang, C.Y. Lin, C.S. Wang, Flame retardancy and dielectric properties of dicyclopentadiene-based benzoxazine cured with a phosphorus-containing phenolic resin, J. Appl. Polym. Sci. 110(4) (2008) 2413-2423. [34] M. Tian, H. Li, L. Wang, Highly efficient Rh(I)/tris-H8-binaphthyl monophosphite catalysts for hydroformylation of dicyclopentadiene to dialdehydes, Chin. J. Catal. 39(10) (2018) 1646-1652. [35] T. Kanai, T.K. Mahato, D. Kumar, Synthesis and characterization of novel silicone acrylate-soya alkyd resin as binder for long life exterior coatings, Prog. Org. Coat. 58(4) (2007) 259-264. [36] H. Jia, P.G. Liu, W.F. Pu, et al., In situ catalytic upgrading of heavy crude oil through low-temperature oxidation, Pet. Sci. 13(3) (2016) 476-488. [37] L. Zhang, C. Li, Y. Ma, et al., SiO2-supported Co-Rh bimetallic catalysts for dicyclopentadiene hydroformylation:Relationships between catalytic performance and structure of the catalysts, Prog. React. Kinet. Mech. 43(2) (2018) 136-143. [38] L. Vanoye, A. Aloui, M. Pablos, et al., A safe and efficient flow oxidation of aldehydes with O2, Org. Lett. 15(23) (2013) 5978-5981. [39] P.F. Dai, J.P. Qu, Y.B. Kang, Organocatalyzed aerobic oxidation of aldehydes to acids, Org. Lett. 21(5) (2019) 1393-1396. [40] L. Sancineto, C. Tidei, L. Bagnoli, et al., Catalyzed oxidation of aldehydes:Green synthesis of carboxylic acids and esters, Molecules 20(6) (2015) 10496-10510. [41] L. Bering, M. Vogt, F.M. Paulussen, et al., Selective, catalytic, and metal-free coupling of electron-rich phenols and anilides using molecular oxygen as terminal oxidant, Org. Lett. 20(13) (2018) 4077-4080. [42] F. Yang, T. Qiu, C. Chi, et al., Synergistic effects of nitrogen-doped graphene and Fe2O3 nanocomposites in catalytic oxidization of aldehyde with O2, Chem. Eng. J. 330(2017) 880-889. [43] I.T. Horváth, Solvents from nature, Green Chem. 10(10) (2008) 1024-1028. [44] V.S. Bryantsev, V. Giordani, W. Walker, et al., Predicting solvent stability in aprotic electrolyte Li-air batteries:Nucleophilic substitution by the superoxide anion radical (O2·-), J. Phys. Chem. A 115(44) (2011) 12399-12409. [45] Y. Zhang, Y. Cheng, H. Cai, et al., Catalyst-free aerobic oxidation of aldehydes into acids in water under mild conditions, Green Chem. 19(23) (2017) 5708-5713. |