[1] A.J. Cramer, J.M. Cole, Removal or storage of environmental pollutants and alternative fuel sources with inorganic adsorbents via host-guest encapsulation, J. Mater. Chem. A 5(2017) 10746-10771. [2] A.S. Kota, D. Luss, V. Balakotaiah, Modeling studies of low-temperature aerobic NOx reduction by a sequence of LNT-SCR catalysts, AIChE J. 59(2013) 3421-3431. [3] Y.S. Kang, S.S. Kim, S.C. Hong, Combined process for removal of SO2, NOx, and particulates to be applied to a 1.6-MWe pulverized coal boiler, J. Ind. Eng. Chem. 30(2015) 197-203. [4] Q. Wan, Q. Yao, L. Duan, X. Li, L. Zhang, J. Hao, Comparison of elemental mercury oxidation across vanadium and cerium based catalysts in coal combustion flue gas:catalytic performances and particulate matter effects, Environ. Sci. Technol. 52(2018) 2981-2987. [5] W. Sun, L.C. Lin, X. Peng, B. Smit, Computational screening of porous metal-organic frameworks and zeolites for the removal of SO2 and NOx from flue gases, AIChE J. 60(2014) 2314-2323. [6] E. Simeone, E. Holsken, M. Nacken, S. Heidenreich, W. De Jong, Study of the behaviour of a catalytic ceramic candle filter in a lab-scale unit at high temperatures, Int. J. Chem. React. Eng. 8(2010) A11. [7] S. Heidenreich, Hot gas filtration-A review, Fuel 104(2013) 83-94. [8] L. Wei, S. Cui, H. Guo, X. Ma, Study on the role of Mn species in low temperature SCR on MnOx/TiO2 through experiment and DFT calculation, Molecular Catalysis 445(2018) 102-110. [9] A. Serrano-Lotina, M. Monte, A. Iglesias-Juez, P. Pavón-Cadierno, R. Portela, P. Ávila, MnOx-support interactions in catalytic bodies for selective reduction of NO with NH3, Appl. Catal. B Environ. 256(2019), 117821. [10] X. Zhou, X. Huang, A. Xie, S. Luo, C. Yao, X. Li, S. Zuo, V2O5-decorated Mn-Fe/attapulgite catalyst with high SO2 tolerance for SCR of NOx with NH3 at low temperature, Chem. Eng. J. 326(2017) 1074-1085. [11] P.A. Kumar, Y.E. Jeong, H.P. Ha, Low temperature NH3-SCR activity enhancement of antimony promoted Vanadia-ceria catalyst, Catal. Today 293-294(2017) 61-72. [12] C. Li, F. Zhang, S. Feng, H. Wu, Z. Zhong, W. Xing, SiC@TiO2/Pt catalytic membrane for collaborative removal of VOCs and nanoparticles, Ind. Eng. Chem. Res. 57(2018) 10564-10571. [13] S. Feng, X. Li, S. Zhao, Y. Hu, Z. Zhong, W. Xing, H. Wang, Multifunctional metal organic framework and carbon nanotube-modified filter for combined ultrafine dust capture and SO2 dynamic adsorption, Environmental Science:Nano 5(2018) 3023-3031. [14] Y. Huang, Q. Huang, H. Liu, C. Zhang, Y. You, N. Li, C. Xiao, Preparation, characterization, and applications of electrospun ultrafine fibrous PTFE porous membranes, J. Membr. Sci. 523(2017) 317-326. [15] X. Nie, H. Shen, Y. Wang, L. Zhou, X. Liu, M. Fang, Investigation of the pyrolysis behaviour of hybrid filter media for needle-punched nonwoven bag filters, Appl. Therm. Eng. 113(2017) 705-713. [16] A. Wimmer, PTFE yarns and fibres in hot gas filtration, Filtration & Separation 36(1999) 26-28. [17] Y. Li, G. Li, Y. Lu, W. Hao, Z. Wei, J. Liu, Y. Zhang, Denitrification performance of nonpitch coal-based activated coke by the introduction of MnOx-CeOx-M(FeOx, CoOx) at low temperature, Molecular Catalysis 445(2018) 21-28. [18] M. Aguilar-Romero, R. Camposeco, S. Castillo, J. Marín, V. Rodríguez-González, L.A. García-Serrano, I. Mejía-Centeno, Acidity, surface species, and catalytic activity study on V2O5-WO3/TiO2 nanotube catalysts for selective NO reduction by NH3, Fuel 198(2017) 123-133. [19] J. Gao, Y. Han, J. Mu, S. Wu, F. Tan, Y. Shi, X. Li, 2D, 3D mesostructured silicas templated mesoporous manganese dioxide for selective catalytic reduction of NOx with NH3, J. Colloid Interface Sci. 516(2018) 254-262. [20] T. Wang, C. Zhu, H. Liu, Y. Xu, X. Zou, B. Xu, T. Chen, Performance of selective catalytic reduction of NO with NH3 over natural manganese ore catalysts at low temperature, Environ. Technol. 39(2018) 317-326. [21] W. Tian, H. Yang, X. Fan, X. Zhang, Catalytic reduction of NOx with NH3 over different-shaped MnO2 at low temperature, J. Hazard. Mater. 188(2011) 105-109. [22] S. Mobini, F. Meshkani, M. Rezaei, Supported Mn catalysts and the role of different supports in the catalytic oxidation of carbon monoxide, Chem. Eng. Sci. 197(2019) 37-51. [23] N. Yang, R. Guo, W. Pan, Q. Chen, Q. Wang, C. Lu, The promotion effect of Sb on the Na resistance of Mn/TiO2 catalyst for selective catalytic reduction of NO with NH3, Fuel 169(2016) 87-92. [24] L. Yao, M.E. Galvez, C. Hu, P. Da Costa, Synthesis gas production via dry reforming of methane over manganese promoted nickel/cerium-zirconium oxide catalyst, Ind. Eng. Chem. Res. 57(2018) 16645-16656. [25] X. Wang, X. Li, Q. Zhao, W. Sun, M. Tade, S. Liu, Improved activity of W-modified MnOx-TiO2 catalysts for the selective catalytic reduction of NO with NH3, Chem. Eng. J. 288(2016) 216-222. [26] H. Li, Y. Wang, S. Wang, X. Wang, J. Hu, Removal of elemental mercury in flue gas at lower temperatures over Mn-Ce based materials prepared by co-precipitation, Fuel 208(2017) 576-586. [27] H. Jiang, C. Wang, H. Wang, M. Zhang, Synthesis of highly efficient MnOx catalyst for low-temperature NH3-SCR prepared from Mn-MOF-74 template, Mater. Lett. 168(2016) 17-19. [28] J.A. Fernando, D.D.L. Chung, Pore structure and permeability of an alumina fiber filter membrane for hot gas filtration, J. Porous. Mater. 9(2002) 211-219. [29] M.E. Ryan, J.L.C. Fonseca, S. Tasker, J.P.S. Badyal, Plasma polymerization of sputtered poly(tetrafluoroethylene), J. Phys. Chem. 99(1995) 7060-7064. [30] H. Barani, Preparation of antibacterial coating based on in situ synthesis of ZnO/SiO2 hybrid nanocomposite on cotton fabric, Appl. Surf. Sci. 320(2014) 429-434. [31] M. Guo, B. Ding, X. Li, X. Wang, J. Yu, M. Wang, Amphiphobic nanofibrous silica Mats with flexible and high-heat-resistant properties, J. Phys. Chem. C 114(2009) 916-921. [32] P. Singh, R. Kumar, Influence of high-energy ion irradiation on the structural, optical, and chemical properties of polytetrafluoroethylene, Adv. Polym. Technol. 33(2014), 21410. [33] T.Y. Guo, Q.H. Zeng, C.H. Zhao, Q.L. Liu, A.M. Zhu, I. Broadwell, Quaternized polyepichlorohydrin/PTFE composite anion exchange membranes for direct methanol alkaline fuel cells, J. Membr. Sci. 371(2011) 268-275. [34] C. Liu, D. Pan, X. Tang, M. Hou, Q. Zhou, J. Zhou, Degradation of rhodamine B by the α-MnO2/peroxymonosulfate system, Water Air Soil Pollut. 227(2016). [35] Y. Xue, Z.S. Fishman, J.A. Röhr, Z. Pan, Y. Wang, C. Zhang, S. Zheng, Y. Zhang, S. Hu, Tunable nano-interfaces between MnOx and layered double hydroxides boost oxygen evolving electrocatalysis, J. Mater. Chem. A 6(2018) 21918-21926. [36] Y. Liu, J. Xu, H. Li, S. Cai, H. Hu, C. Fang, L. Shi, D. Zhang, Rational design and in situ fabrication of MnO2@NiCo2O4 nanowire arrays on Ni foam as high-performance monolith de-NOx catalysts, J. Mater. Chem. A 3(2015) 11543-11553. [37] X. Xiao, Z. Sheng, L. Yang, F. Dong, Low-temperature selective catalytic reduction of NOx with NH3 over a manganese and cerium oxide/graphene composite prepared by a hydrothermal method, Catalysis Science & Technology 6(2016) 1507-1514. [38] L.H. Guo, L. Guo, D.Y. Zhao, Z.N. Gao, Y. Tian, T. Ding, J. Zhang, L.R. Zheng, X.G. Li, Oxidizing, trapping and releasing NOx over model manganese oxides in alternative lean-burn/fuel-rich atmospheres at low temperatures, Catal. Today 297(2017) 27-35. [39] Y. Zeng, D. Jiang, Y. Wang, S. Zhang, Q. Zhong, The inhibition effect of oxygen in the calcination atmosphere on the catalytic performance of MnOx-CeO2 catalysts for NO oxidation, React. Kinet. Mech. Catal. 122(2017) 593-604. [40] B. Shen, F. Wang, B. Zhao, Y. Li, Y. Wang, The behaviors of V2O5-WO3/TiO2 loaded on ceramic surfaces for NH3-SCR, J. Ind. Eng. Chem. 33(2016) 262-269. [41] D. Jia, X. Chen, H. Tan, F. Liu, L. Yue, Y. Zheng, X. Cao, C. Li, Y. Sun, H. Liu, J. Liu, Boosting electrochemistry of manganese oxide Nanosheets by Ostwald ripening during reduction for Fiber electrochemical energy storage device, ACS Appl. Mater. Interfaces 10(2018) 30388-30399. [42] Y. Li, J. Wang, Y. Zhang, M.N. Banis, J. Liu, D. Geng, R. Li, X. Sun, Facile controlled synthesis and growth mechanisms of flower-like and tubular MnO2 nanostructures by microwave-assisted hydrothermal method, J. Colloid Interface Sci. 369(2012) 123-128. [43] Q. Yan, S. Chen, L. Qiu, Y. Gao, D. O'Hare, Q. Wang, The synthesis of CuyMnzAl1-zOx mixed oxide as a low-temperature NH3-SCR catalyst with enhanced catalytic performance, Dalton Trans. 47(2018) 2992-3004. [44] X. Zhao, L. Huang, H. Li, H. Hu, X. Hu, L. Shi, D. Zhang, Promotional effects of zirconium doped CeVO4 for the low-temperature selective catalytic reduction of NOx with NH3, Appl. Catal. B Environ. 183(2016) 269-281. [45] B. Jia, J. Guo, H. Luo, S. Shu, N. Fang, J. Li, Study of NO removal and resistance to SO2 and H2O of MnOx/TiO2, MnOx/ZrO2 and MnOx/ZrO2 -TiO2, Applied Catalysis A:General 553(2018) 82-90. [46] X. Tang, C. Li, H. Yi, L. Wang, Q. Yu, F. Gao, X. Cui, C. Chu, J. Li, R. Zhang, Facile and fast synthesis of novel Mn2CoO4@rGO catalysts for the NH3-SCR of NOx at low temperature, Chem. Eng. J. 333(2018) 467-476. |