[1] H. Vikström, S. Davidsson, M. Höök, Lithium availability and future production outlooks, Appl. Energy 110 (2013) 252-266 [2] A. Väyrynen, J. Salminen, Lithium ion battery production, J. Chem. Thermodyn. 46 (2012) 80-85 [3] A.M. Bradshaw, T. Hamacher, U. Fischer, Is nuclear fusion a sustainable energy form? Fusion Eng. Des. 86 (9-11) (2011) 2770-2773 [4] A. Ebensperger, P. Maxwell, C. Moscoso, The lithium industry:Its recent evolution and future prospects, Resour. Policy 30 (3) (2005) 218-231 [5] M.S. Whittingham, Lithium batteries and cathode materials, Chem. Rev. 104 (10) (2004) 4271-4301 [6] B. Swain, Recovery and recycling of lithium:A review, Sep. Purif. Technol. 172 (2017) 388-403 [7] R. Chitrakar, H. Kanoh, Y. Miyai, K. Ooi, Recovery of lithium from seawater using manganese oxide adsorbent (H1.6Mn1.6O4) derived from Li1.6Mn1.6O4, Ind. Eng. Chem. Res. 40 (9) (2001) 2054-2058 [8] S.H. Mohr, G.M. Mudd, D. Giurco, Lithium resources and production:Critical assessment and global projections, Minerals 2 (1) (2012) 65-84 [9] C.W. Kamienski, D.P. Mcdonald, M.W. Stark, J.R. Papcun, Lithium and Lithium Compounds John Wiley & Sons, Inc., New York, (2005) 120-153 [10] S.E. Kesler, P.W. Gruber, P.A. Medina, G.A. Keoleian, M.P. Everson, T.J. Wallington, Global lithium resources:Relative importance of pegmatite, brine and other deposits, Ore Geol. Rev. 48 (2012) 55-69 [11] T. Ryu, D.H. Lee, J.C. Ryu, J. Shin, K.S. Chung, Y.H. Kim, Lithium recovery system using electrostatic field assistance, Hydrometallurgy 151 (2015) 78-83 [12] G.F. Han, D.L. Gu, G. Lin, Q. Cui, H.Y. Wang, Recovery of lithium from a synthetic solution using spodumene leach residue, Hydrometallurgy 177 (2018) 109-115 [13] H.J. Hong, T. Ryu, I.S. Park, M. Kim, J. Shin, B.G. Kim, K.S. Chung, Highly porous and surface-expanded spinel hydrogen manganese oxide (HMO)/Al2O3 composite for effective lithium (Li) recovery from seawater, Chem. Eng. J. 337 (2018) 455-461 [14] T. Ryu, A. Rengaraj, Y. Haldorai, J. Shin, S.R. Choe, G.W. Lee, S.K. Hwang, Y.K. Han, B.G. Kim, Y.S. Huh, K.S. Chung, Mechanochemical synthesis of silica-lithium manganese oxide composite for the efficient recovery of lithium ions from seawater, Solid State Ionics 308 (2017) 77-83 [15] T. Chen, G.P. Jin, G.J. Meng, X.Y. Lv, Y.X. Yu, C.N. Chen, Recovery of cesium using NiHCF/NiAl-LDHs/CCFs composite by two-stage membrane-free ESIX process, J. Environ. Chem. Eng. 7 (1) (2019) 102799 [16] J.Y. Su, G.P. Jin, T. Chen, X.D. Liu, C.N. Chen, J.J.Tian, The characterization and application of Prussian blue at graphene coated carbon fibers in a separated adsorption and electrically switched ion exchange desorption processes of cesium, Electrochim. Acta 230 (2017) 399-406 [17] Q. Wang, X. Du, F.F. Gao, F.F. Liu, M.M. Liu, X.G. Hao, K.Y. Tang, G.Q. Guan, A. Abudula, A novel H1.6Mn1.6O4/reduced graphene oxide composite film for selective electrochemical capturing lithium ions with low concentration, Sep. Purif. Technol. 226 (2019) 59-67 [18] C.P. Lawagon, G.M. Nisola, J. Mun, A. Tron, R.E.C. Torrejos, J.G. Seo, H. Kim, W.J. Chung, Adsorptive Li+ mining from liquid resources by H2TiO3:Equilibrium, kinetics, thermodynamics, and mechanisms, J. Ind. Eng. Chem. 35 (2016) 347-356 [19] X.C. Shi, D.F. Zhou, Z.B. Zhang, L.L. Yu, H. Xu, B.Z. Chen, X.Y. Yang, Synthesis and properties of Li1.6Mn1.6O4, and its adsorption application, Hydrometallurgy 110 (1-4) (2011) 99-106 [20] J.L. Xiao, X.Y. Nie, S.Y. Sun, X.F. Song, P. Li, J.G. Yu, Lithium ion adsorption-desorption properties on spinel Li4Mn5O12 and pH-dependent ion-exchange model, Adv. Powder Technol. 26 (2) (2015) 589-594 [21] T. Ryu, J. Shin, S.M. Ghoreishian, K.S. Chung, Y.S. Huh, Recovery of lithium in seawater using a titanium intercalated lithium manganese oxide composite, Hydrometallurgy 184 (2019) 22-28 [22] H.J. Hong, I.S. Park, T. Ryu, J. Ryu, B.G. Kim, K.S. Chung, Granulation of Li1.33Mn1.67O4 (LMO) through the use of cross-linked chitosan for the effective recovery of Li+ from seawater, Chem. Eng. J. 234 (2013) 16-22 [23] J.L. Xiao, S.Y. Sun, X.F. Song, P. Li, J.G. Yu, Lithium ion recovery from brine using granulated polyacrylamide-MnO2 ion-sieve, Chem. Eng. J. 279 (2015) 659-666 [24] G.P. Xiao, K.F. Tong, L.S. Zhou, J.L. Xiao, S.Y. Sun, P. Li, J.G. Yu, Adsorption and desorption behavior of lithium ion in spherical PVC-MnO2 ion sieve, Ind. Eng. Chem. Res. 51 (33) (2012) 10921-10929 [25] M.J. Park, G.M. Nisola, A.B. Beltran, R.E.C. Torrejos, J.G. Seo, S.P. Lee, H. Kim, W.J. Chung, Recyclable composite nanofiber adsorbent for Li+ recovery from seawater desalination retentate, Chem. Eng. J. 254 (2014) 73-81 [26] K.S. Chung, J.C. Lee, W.K. Kim, S.B. Kim, K.Y. Cho, Inorganic adsorbent containing polymeric membrane reservoir for the recovery of lithium from seawater, J. Membr. Sci. 325 (2) (2008) 503-508 [27] G.M. Nisola, L.A. Limjuco, E.L. Vivas, C.P. Lawagon, M.J. Park, H.K. Shon, N. Mittal, I.W. Nah, H. Kim, W.J. Chung, Macroporous flexible polyvinyl alcohol lithium adsorbent foam composite prepared via surfactant blending and cryo-desiccation, Chem. Eng. J. 280 (2015) 536-548 [28] Y. Han, H. Kim, J. Park, Millimeter-sized spherical ion-sieve foams with hierarchical pore structure for recovery of lithium from seawater, Chem. Eng. J. 210 (2012) 482-489 [29] A. Umeno, Y. Miyai, N. Takagi, R. Chitrakar, K. Sakane, K. Ooi, Preparation and adsorptive properties of membrane-type adsorbents for lithium recovery from seawater, Ind. Eng. Chem. Res. 41 (17) (2002) 4281-4287 [30] J.F. Shen, B. Yan, T. Li, Y. Long, N. Li, M.X. Ye, Study on graphene-oxide-based polyacrylamide composite hydrogels, Compos. Part A:Appl. Sci. Manuf. 43 (9) (2012) 1476-1481 [31] R.Q. Liu, S.M. Liang, X.Z. Tang, D. Yan, X.F. Li, Z.Z. Yu, Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels, J. Mater. Chem. 22 (28) (2012) 14160 [32] H. Bai, C. Li, X.L. Wang, G.Q. Shi, A pH-sensitive graphene oxide composite hydrogel, Chem. Commun. 46 (14) (2010) 2376 [33] J.N. Tiwari, K. Mahesh, N.H. Le, K.C. Kemp, R. Timilsina, R.N. Tiwari, K.S. Kim, Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions, Carbon 56 (2013) 173-182 [34] Y. Wang, W.H. Lai, N. Wang, Z. Jiang, X. Wang, P.C. Zou, Z.Y. Lin, H.J. Fan, F.Y. Kang, C.P. Wong, C. Yang, A reduced graphene oxide/mixed-valence manganese oxide composite electrode for tailorable and surface mountable supercapacitors with high capacitance and super-long life, Energy Environ. Sci. 10 (4) (2017) 941-949 [35] Y.J. Hao, Q.Y. Lai, D.Q. Liu, Z.U. Xu, X.Y. Ji, Synthesis by citric acid Sol-gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery, Mater. Chem. Phys. 94 (2-3) (2005) 382-387 [36] W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80 (6) (1958) 1339 [37] H. Jo, M. Sim, S. Kim, S.M. Yang, Y. Yoo, J.H. Park, T.H. Yoon, M.G. Kim, J.Y. Lee, Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation, Acta Biomater. 48 (2017) 100-109 [38] A.K. Vipin, B.Y. Hu, B. Fugetsu, Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water, J. Hazard Mater. 258-259 (2013) 93-101 [39] L.W. Ma, B.Z. Chen, X.C. Shi, W. Zhang, K. Zhang, Stability and Li+ extraction/adsorption properties of LiMxMn2-xO4 (M=Ni, Al,Ti; 0 ≤ x ≤ 1) in aqueous solution, Colloids Surf. A 369 (2010) 88-94 [40] C.M. Julien, K. Zaghib, Electrochemistry and local structure of nano-sized Li4/3Me5/3O4 (Me=Mn, Ti) spinels, Electrochim. Acta 50 (2-3) (2004) 411-416 [41] M.L.P. Le, P. Strobel, C.V. Colin, T. Pagnier, F. Alloin, Spinel-type solid solutions involving Mn4+ and Ti4+:Crystal chemistry, magnetic and electrochemical properties, J. Phys. Chem. Solids 72 (2) (2011) 124-135 [42] Y.J. Hao, Q.Y. Lai, X.Y. Xu, L. Wang, Electrochemical performance of symmetric supercapacitor based on Li4Mn5O12 electrode in Li2SO4 electrolyte, Mater. Chem. Phys. 126 (1-2) (2011) 432-436 [43] W. Branford, M.A. Green, D.A. Neumann, ChemInformabstract:Structure and ferromagnetism in Mn4+ spinels:AM0.5Mn1.5O4 (A:Li, Cu; M:Ni, Mg), Chem. Mater. 14(4)(2002)1649-1656 [44] L.W. Ma, Z.R. Nie, X.L. Xi, L.Y. Zhao, B.Z. Chen, Lithium ion-sieve:Characterization and Li+ adsorption in ammonia buffer system, J. Environ. Chem. Eng. 5 (1) (2017) 995-1003 [45] Y.J. Hao, Y.Y. Wang, Q.Y. Lai, Y. Zhao, L.M. Chen, X.Y. Ji, Study of capacitive properties for LT-Li4Mn5O12 in hybrid supercapacitor, J. Solid State Electrochem. 13 (6) (2009) 905-912 [46] R.J. Su, C.S. Dai, Synthesis and electrochemical behavior of Mg, F dual substitutions spinel LiMg0.1Mn1.9O3.95F0.05, RareMet. Mater. Eng. (2007) 36(S3)182-187. (in Chinese) [47] Q.H. Wu, J.M. Xu, Q.C. Zhuang, S.G. Sun, X-ray photoelectron spectroscopy of LiM0.05Mn1.95O4 (M=Ni, Fe and Ti), Solid State Ionics 177 (17-18) (2006) 1483-1488 [48] S.L. Wang, S.L. Zheng, Z.M. Wang, W.W. Cui, H.L. Zhang, L.R. Yang, Y. Zhang, P. Li, Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves, Chem. Eng. J. 332 (2018) 160-168 [49] L.Y. Tian, W. Ma, M. Han, Adsorption behavior of Li+ onto nano-lithium ion sieve from hybrid magnesium/lithium manganese oxide, Chem. Eng. J. 156 (1) (2010) 134-140 [50] L. Wang, C.G. Meng, M. Han, W. Ma, Lithium uptake in fixed-pH solution by ion sieves, J. Colloid Interface Sci. 325(1) (2008) 31-40 |