[1] T. Li, S.G. Liu, X.F. Yao, Addition of reactive oxygen scavenger to enhance PH3 biopurification: Process and mechanism, Process. Saf. Environ. Prot. 142 (2020) 118–125.Doi: 10.1016/j.psep.2020.06.019 [2] S. Li, J.M. Hao, P. Ning, C. Wang, K. Li, L.H. Tang, X. Sun, D.D. Zhang, Y. Mei, Y.W. Wang, Preparation of CuFe nanocomposites loaded diatomite and their excellent performance in simultaneous adsorption/oxidation of hydrogen sulfide and phosphine at low temperature, Sep. Purif. Technol. 180 (2017) 23–35.Doi: 10.1016/j.seppur.2017.02.044 [3] S.H. Ahn, N. Bhuvanesh, J. Blümel, Di(hydroperoxy)alkane adducts of phosphine oxides: Safe, solid, stoichiometric, and soluble oxidizing agents, Chemistry 23 (67) (2017) 16998–17009. pubmed.ncbi.nlm.nih.gov/28853180/ [4] S. Yu, S.G. Liu, X.F. Yao, P. Ning, Enhanced biological phosphorus removal from wastewater by current stimulation coupled with anaerobic digestion, Chemosphere 293 (2022) 133661. pubmed.ncbi.nlm.nih.gov/35063560/ [5] Y.R. Wang, H.Q. Yan, J. Liu, K.L. Wang, E.F. Wang, Electrochemical oxidation and the quantitative determination of phosphine on a SPE-based sensor, Talanta 62 (4) (2004) 745–750. pubmed.ncbi.nlm.nih.gov/18969358/ [6] J.Y. Feng, F. Wang, C. Wang, K. Li, P. Ning, X. Sun, L.J. Jia, Ce-doping CuO/HZSM-5 as a regenerable sorbent for Adsorption-Oxidation removal of PH3 at low temperature, Sep. Purif. Technol. 277 (2021) 119420.Doi: 10.1016/j.seppur.2021.119420 [7] S. Li, K. Li, J.M. Hao, P. Ning, L.H. Tang, X. Sun, Acid modified mesoporous Cu/SBA-15 for simultaneous adsorption/oxidation of hydrogen sulfide and phosphine, Chem. Eng. J. 302 (2016) 69–76.Doi: 10.1016/j.cej.2016.05.037 [8] S. Liu, F. Su, T. Li, P. Ning, Purification of low concentration phosphine by bio-trickling filter system and analysis of microbial community, Chin. J. Environ. Eng. 12 (12) (2018) 3406–3414.Doi: 10.12030/j.cjee.201807167 [9] Y. Lin, J. Li, G. Qu, P. Ning and Y. J. C. J. o. E. E. Ma, Purifying low concentration phosphine with catalyst supported on ion exchange resins 110, Chinese Journal of Environmental Engineering 7(2013)4463-4468.Doi: 10.1016/j.seppur.2021.119420 [10] J.Y. Feng, F. Wang, C. Wang, K. Li, X. Sun, P. Ning, Cu/HZSM-5 sorbent treated by NH3 plasma for low-temperature simultaneous adsorption-oxidation of H2S and PH3, ACS Appl. Mater. Interfaces 13 (21) (2021) 24670–24681. pubmed.ncbi.nlm.nih.gov/34018716/ [11] P. Ning, X. J. F. o. E. S. Wang and Engineering, Advanced purification and comprehensive utilization of yellow phosphorous off gas, Frontiers of Environmental Science & Engineering 9(2015)181-189.Doi: 10.1016/j.psep.2020.06.019 [12] V. Sliesarenko, V. Tomina, O. Dudarko, M. Bauman, A. Lobnik, I. Melnyk, Functionalization of polymeric membranes with phosphonic and thiol groups for water purification from heavy metal ions, Appl. Nanosci. 10 (2) (2020) 337–346.Doi: 10.1007/s13204-019-01170-7 [13] J.V. Obligacion, P.J. Chirik, Earth-abundant transition metal catalysts for alkene hydrosilylation and hydroboration, Nat. Rev. Chem. 2 (5) (2018) 15–34. www.nature.com/articles/s41570-018-0001-2 [14] W. Kiciński, S. Dyjak, Transition metal impurities in carbon-based materials: Pitfalls, artifacts and deleterious effects, Carbon 168 (2020) 748–845.Doi: 10.1016/j.carbon.2020.06.004 [15] C.H. Wang, J. Kim, V. Malgras, J. Na, J.J. Lin, J. You, M. Zhang, J.S. Li, Y. Yamauchi, Metal-organic frameworks and their derived materials: Emerging catalysts for a sulfate radicals-based advanced oxidation process in water purification, Small 15 (16) (2019) e1900744. pubmed.ncbi.nlm.nih.gov/30884141/ [16] S.B. Patil, P.S. Basavarajappa, N. Ganganagappa, M.S. Jyothi, A.V. Raghu, K.R. Reddy, Recent advances in non-metals-doped TiO2 nanostructured photocatalysts for visible-light driven hydrogen production, CO2 reduction and air purification, Int. J. Hydrog. Energy 44 (26) (2019) 13022–13039.Doi: 10.1016/j.ijhydene.2019.03.164 [17] S.M.G. Pires, M.M.Q. Simões, I.C.M.S. Santos, S.L.H. Rebelo, F.A.A. Paz, M.G.P.M.S. Neves, J.A.S. Cavaleiro, Oxidation of organosulfur compounds using an iron(III) porphyrin complex: An environmentally safe and efficient approach, Appl. Catal. B Environ. 160-161 (2014) 80–88.Doi: 10.1016/j.apcatb.2014.05.003 [18] B.K. Huang, Z.L. Wu, H.Y. Zhou, J.Y. Li, C.Y. Zhou, Z.K. Xiong, Z.C. Pan, G. Yao, B. Lai, Recent advances in single-atom catalysts for advanced oxidation processes in water purification, J. Hazard. Mater. 412 (2021) 125253. pubmed.ncbi.nlm.nih.gov/33548777/ [19] L.P. Wang, Y.C. Zhang, F.F. Li, X.Y. Hao, H.Y. Zhang, J.Q. Zhao, Direct C–H trifluoromethylation of quinoxalin-2(1H)-ones under transition-metal-free conditions, Adv. Synth. Catal. 360 (20) (2018) 3969–3977. doi.org/10.1002/adsc.201800863 [20] Y. Ogiwara, N. Sakai, Acyl fluorides in late-transition-metal catalysis, Angew. Chem. Int. Ed Engl. 59 (2) (2020) 574–594. pubmed.ncbi.nlm.nih.gov/30969455/ [21] Y.F. Guo, J.L. You, G.C. Jiang, H. Chen, H.Y. Hou, High temperature Raman spectral study of sodium phosphate structure, Spectrosc. Spectr. Anal. (2003) 23(5)855–858. |