1 Harris, J.G., Yung, K.H., “Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model”, J. Phys. Chem., 99, 12021-12024 (1995). 2 Murthy, C.S., Oshea, S.F., McDonald, I.R., “Electrostatic interactions in molecular crystals:lattice dynamics of solid nitrogen and carbon dioxide”, Mol. Phys., 50, 531-541 (1983). 3 Geiger, L.C., Ladanyi, B.M., Chapin, M.E., “A comparison of models for depolarized light scattering in supercritical CO2 ”, J. Chem. Phys., 93, 4533-4542 (1990). 4 Potoff, J.J., Siepmann, J.I., “Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen”, AIChE J., 47, 1676-1682 (2001). 5 Vrabec, J., Stoll, J., Hasse, H., “A set of molecular models for symmetric quadrupolar fluids”, J. Phys. Chem. B, 105, 12126-12133 (2001). 6 Zhang, Z., Duan, Z., “An optimized molecular potential for carbon dioxide”, J. Chem. Phys., 122, 214507-214522 (2005). 7 Draghi, C.N., Bruin, T.D., Pellitero, J.P., Avalos, J.B., Mackie, A.D., “Thermodynamic and transport properties of carbon dioxide from molecular simulation”, J. Chem. Phys., 126, 064509-1-8 (2007). 8 Saharay, M., Balasubramanian, S., “Ab initio molecular-dynamics study of supercritical carbon dioxide”, J. Chem. Phys., 120, 9694-9702 (2004). 9 Zhang, Y., Yang, J., Yu, Y., “Dielectric constant and density dependence of the structure of supercritical carbon dioxide using a new modified empirical potential model:A Monte Carlo simulation study”, J. Phys. Chem. B, 109, 13375-13382 (2005). 10 Ishii, R., Okazaki, S., Odawara, O., Okada, I., Misawa, M., Fukunaga, T., “Structural study of supercritical carbon dioxide by neutron diffraction”, Fluid Phase Equilib., 104, 291-304 (1995). 11 Ishii, R., Okazaki, S., Okada, I., Furusaka, M., Watanabe, N., Misawa, M., Fukunaga, T., “Density dependence of structure of supercritical carbon dioxide along an isotherm”, J. Chem. Phys., 105, 7011-7021 (1996). 12 Fedchenia, I.I., Schr der, J., “Local orientational correlations and short time anisotropic motion in molecular liquids:computer simulations of liquid CO2 ”, J. Chem. Phys., 106, 7749-7755 (1997). 13 Kolafa, J., Nezbeda, I., Lisal, M., “Effect of shortand long-range forces on the properties of fluids. Ⅲ. Dipolar and quadrupolar fluids”, Mol. Phys., 99, 1751-1764 (2001). 14 Chen, B., Potoff, J.J., Siepmann, J.I., “Monte Carlo calculations for alcohol and their mixtures with alkanes. Transferable potential for phase equilibra.5.united-atom description of primary, secondary, and tertiary alcohols”, J. Phys. Chem. B, 105, 3093-3104 (2001). 15 Nath, S.K., “Molecular simulation of vapor-liquid phase equilibria of hydrogen sulfide and its mixtures with alkanes”, J. Phys. Chem. B, 107, 9498-9504 (2003). 16 Khare, R., Sum, A.K., Nath, S.K., de Pablo, J.J., “Simulation of vapor-liquid phase equilibria of primary alcohols and alcohol-alkane mixtures”, J. Phys. Chem. B, 108, 10071-10076 (2004). 17 de Pablo, J.J., Laso, M., Suter, U.W., “Simulation of polyethylene above and below the melting point”, J. Chem. Phys., 96, 6157-6162 (1992). 18 Errington, J.R., Panagiotopoulos, A.Z., “Phase equilibria of the modified Buckingham exponential-6 potential from Hamiltonian scaling grand canonical Monte Carlo”, J. Chem. Phys., 109, 1093-1100 (1998). 19 Allen, M.P., Tildesley, D.J., Computer Simulation of Liquids, Oxford Science, Oxford (1989). 20 National Institute of Standards and Technology, NIST Chemistry WebBook, http://webbook.nist.gov/chemistry 21 Vorholz, J., Harismiadis, V.I., Rumpf, B., Panagiotopoulos, A.Z., Maurer, G., “Vapor plus liquid equilibrium of water, carbon dioxide, and the binary system, water plus carbon dioxide, from molecular simulation”, Fluid Phase Equilibria, 170, 203-234 (2000). 22 Etesse, P., Zega, J.A., Kobayashi, R., “High pressure nuclear magnetic resonance measurement of spin-lattice relaxation and self-diffusion in carbon dioxide”, J. Chem. Phys., 97, 2022-2029 (1992). |