[1] R. Cucciniello, D. Cespi, M. Riccardi, E. Neri, F. Passarini, F.M. Pulselli, Maleic anhydride from bio-based 1-butanol and furfural: a life cycle assessment at the pilot scale, Green Chem. 25 (15) (2023) 5922-5935. [2] M. Muller, M. Kutscherauer, S. Bocklein, G.D. Wehinger, T. Turek, G. Mestl, Modeling the selective oxidation of n-butane to maleic anhydride: From active site to industrial reactor, Catal. Today 387 (2022) 82-106. [3] F. Trifiro, R.K. Grasselli, How the yield of maleic anhydride in n-butane oxidation, using VPO catalysts, was improved over the years, Top. Catal. 57 (14) (2014) 1188-1195. [4] N. Ballarini, F. Cavani, C. Cortelli, S. Ligi, F. Pierelli, F. Trifiro, C. Fumagalli, G. Mazzoni, T. Monti, VPO catalyst for n-butane oxidation to maleic anhydride: a goal achieved, or a still open challenge? Top. Catal. 38 (1) (2006) 147-156. [5] G. Mestl, D. Lesser, T. Turek, Optimum performance of vanadyl pyrophosphate catalysts, Top. Catal. 59 (17) (2016) 1533-1544. [6] Y. Dong, M. Geske, O. Korup, N. Ellenfeld, F. Rosowski, C. Dobner, R. Horn, What happens in a catalytic fixed-bed reactor for n-butane oxidation to maleic anhydride? Insights from spatial profile measurements and particle resolved CFD simulations, Chem. Eng. J. 350 (2018) 799-811. [7] Y. Dong, F.J. Keil, O. Korup, F. Rosowski, R. Horn, Effect of the catalyst pore structure on fixed-bed reactor performance of partial oxidation of n-butane: a simulation study, Chem. Eng. Sci. 142 (2016) 299-309. [8] S. Boecklein, G. Mestl, A. Adler, M. Kutscherauer, New catalyst system for producing maleic anhydride by means of the catalytic oxidation of n-butane: US20220266233.2022-08-25. [9] M. J. Mummey, Process for the production of maleic anhydride: US4855459.1989-08-08. [10] T.P. Wellauer, D.L. Cresswell, E.J. Newson, Optimal policies in maleic anhydride production through detailed reactor modelling, Chem. Eng. Sci. 41 (4) (1986) 765-772. [11] J. Maussner, C. Dreiser, O. Wachsen, H. Freund, Systematic model-based design of tolerant chemical reactors, J. Adv. Manuf. Process. 1 (3) (2019) e10024. [12] G. Maria, A.C. Dan, Setting optimal operating conditions for a catalytic reactor for butane oxidation using parametric sensitivity analysis and failure probability indices, J. Loss Prev. Process. Ind. 25 (6) (2012) 1033-1043. [13] D.H. Oh, D. Adams, N.D. Vo, D.Q. Gbadago, C.H. Lee, M. Oh, Actor-critic reinforcement learning to estimate the optimal operating conditions of the hydrocracking process, Comput. Chem. Eng. 149 (2021) 107280. [14] L.T. Zhu, E.Y. Kenig, A study of methanol-to-olefins packed bed reactor performance using particle-resolved CFD and machine learning, AlChE. J. 70 (10) (2024) e18520. [15] H.L. Zhang, A.Q. Zhu, J. Xu, W. Ge, Gas-solid reactor optimization based on EMMS-DPM simulation and machine learning, Particuology 89 (2024) 131-143. [16] Z. Wu, A. Tran, Y.M. Ren, C.S. Barnes, S. Chen, P.D. Christofides, Model predictive control of phthalic anhydride synthesis in a fixed-bed catalytic reactor via machine learning modeling, Chem. Eng. Res. Des. 145 (2019) 173-183. [17] X.K. Liu, A.R. Khan, Y. Shi, W.Y. Chen, X.Z. Duan, Dependences of catalyst layer thickness and pellet grading mode on partial oxidation of n-butane, Chem. Eng. Sci. 296 (2024) 120235. [18] D. Nemec, J. Levec, Flow through packed bed reactors: 1. single-phase flow, Chem. Eng. Sci. 60 (24) (2005) 6947-6957. [19] C. Becker, Katalytische Wandreaktorkonzepte Für Msa-Synthese Und Methanol-Dampfreformierung, PhD Thesis, Institut fur¨ Chemische Verfahrenstechnik der Universitat¨ Stuttgart, 2002. [20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, G. Louppe, P. Prettenhofer, R. Weiss, R.J. Weiss, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine learning in Python, Journal of Machine Learning Research, 12(10)(2011)2825. |