1 Welker, M., Steinebrunner, G., Solca, J., Huber, H., "Ab initio calculation of the intermolecular potential energy surface of (CO2)2 and first applications in simulations of fluid CO2", Chem. Phys., 213, 253-261 (1996).2 Zéberg-Mikkelsen, C.K., Quiñones-Cisneros, S.E., Stenby, E.H., "Viscosity prediction of carbon dioxide-hydrocarbon mixtures using the friction theory", Pet. Sci. Technol., 20 (1-2), 27-42 (2002).3 Bastien, L.A.J., Price, P.N., Brown, N.J., "Intermolecular potential parameters and combining rules determined from viscosity data", Int. J. Chem. Kinet., 42, 713-723 (2010).4 Maitland, G.C., Rigby, M., Smith, E.B., Wakeham, W.A., Intermolecular Forces, Their Origin and Determination, Clarendon Press, Oxford (1987).5 Clancy, P., Gough, D.W., Matthews, G.P., Smith, E.B., "Simplified methods for inversion of thermophysical data", Mol. Phys., 30, 1397-1407 (1975).6 Papari, M.M., Boushehri, A., "Semi-empirical calculation of the transport properties of eight binary gas mixtures at low density by the inversion method", B. Chem. Soc. Jpn., 71, 2757-2767 (1998).7 Papari, M.M., Mohammaed-Aghaie, D., Haghighi, B., Boushehri, A., "Transport properties of argon-hydrogen gaseous mixture from an effective unlike interaction", Fluid Phase Equilibr., 232, 122-135 (2005).8 Papari, M.M., Mohammad-Aghaie, D., Moghadasi, J., Boushehri, A., "Semi-empirically based assessment for predicting dilute gas transport properties of F2 and Ar-F2 fluids", B. Chem. Soc. Jpn., 79, 67-74 (2006).9 Moghadasi, J., Mohammad-Aghaie, D., Papari, M.M., "Predicting gas transport coefficients of alternative refrigerant mixtures", Ind. Eng. Chem. Res., 45, 9211-9223 (2006).10 Moghadasi, J., Mohammad-Aghaie, D., Papari, M.M., Faghihi, M.A., "Predicting gas transport properties of light hydrocarbon mixtures as candidates for new refrigerants", High Temp. High Press., 37, 299-316 (2008).11 Moghadasi, J., Papari, M.M., Mohammad-Aghaie, D., Campo, A., "Gas transport coefficients of light hydrocarbons, halogenated methane and ethane as candidates for new refrigerants", B. Chem. Soc. Jpn., 81, 220-234 (2008).12 Nikmanesh, S., Moghadasi, J., Papari, M.M., "Calculation of transport properties of CF4+ noble gas mixtures", Chin. J. Chem. Eng., 17 (5), 814-821 (2009).13 Hirschfelder, J.O., Curtis, C.F., Bird, B.R., Molecular Theory of Gases and Liquids, John-Wiley, New York (1964).14 Chapman, S., "On the law of distribution of molecular velocities, and on the theory of viscosity and thermal conduction, in a non-uniform simple monatomic gas", Philos. Trans. R. Soc. London Ser. A., 216, 279-348 (1916).15 Enskog, D., Kinetische Theorie der Vorgänge in Mässig Verdünnten gasen, Ph. D Thesis, Sweden (1917).16 Chapman, S., Cowling, T.G., The Mathematical Theory of Non Uniform Gases, Cambridge University Press, London (1970).17 Karkheck, J., Stell, G., "Kinetic perturbation theory. Structure of collision integrals for the square-well gas", J. Chem. Phys., 87, 2858-2866 (1983).18 Tipton, E.L., Tompson, R.V., Loyalka, S.K., "Chapman-Enskog solutions to arbitrary order in sonine polynomials II: Viscosity in a binary, rigid-sphere, gas mixture", Eur. J. Mech. B-Fluid, 28, 335-352 (2009).19 Burnett, D., "The distribution of velocities in a slightly non-uniform gas", P. Lond. Math. Soc., 39, 385-430 (1935).20 Sone, Y., Kinetic Theory and Fluid Dynamics, Birkhauser Basel, Mumbai (2004).21 Loyalka, S.K., Tipton, E.L., Tompson, R.V., "Chapman-Enskog solutions to arbitrary order in sonine polynomials I: Simple, rigid-sphere gas", Physica A., 379, 417-435 (2007).22 Lin, S.T., Hsu, H.W., "Transport collision integrals for gases using the Lennard-Jones (6, n) potentials", J. Chem. Eng. Data, 14, 328-332 (1969).23 Monchick, L., Mason, E.A., "Transport properties of polar gases", J. Chem. Phys., 35, 1676-1697 (1961).24 Herskowitz, I., Kuleshov, G.G., "Thermophysical data inversion: The limits of uncertainty", In: Fifteenth Symposium on Thermophysical Properties, Colorado, USA (2003).25 Maitland, G.C., Smith, E.B., "The intermolecular pair potential of argon", Mol. Phys., 22, 861-868 (1971).26 Gough, D.W., Maitland, G.C., Smith, E.B., "The pair potential energy function for krypton", Mol. Phys., 27, 867-872 (1974).27 Papari, M.M., "Transport properties of carbon dioxide from an isotropic and effective pair potential energy", Chem. Phys., 288, 249-259 (2003).28 Gough, D.W., Maitland, G.C., Smith, E.B., "The direct determination of intermolecular potential energy functions from gas viscosity measurements", Mol. Phys., 24, 151-161 (1972).29 Viehland, L.A., Mason, E.A., Morrison, W.F., Flannery, M.R., "Tables of transport collision integrals for (n, 6, 4) ion-neutral potentials", Atom Data Nucl. Data, 16, 495-514 (1975).30 Faissat, B., Knudsen, K., Stenby, E.H., Montel, F., "Fundamental statements about thermal diffusion for a multi-component mixture in a porous medium", Fluid Phase Equilibr., 100, 209-222 (1994).31 Schreiber, M., Vesovic, V., Wakeham, W.A., "Thermal conductivity of multicomponent poly-atomic dilute gas mixtures", Int. J. Thermophys., 18, 925-938 (1997).32 Vesovic, V., "Thermal conductivity of polyatomic dilute gas mixtures", High Temp. High Press., 32, 163-170 (2000).33 Uribe, F.J., Mason, E.A., Kestin, J., "Composition dependence of the thermal conductivity of low-density poly-atomic gas mixtures", Int. J. Thermophys., 12, 43-51 (1991).34 Thijsse, B.J., Hooft, G.W., Coombe, D.A., Knnap, H.F.P., Beenakker, J.J.M., "Some simplified expressions for the thermal conductivity in an external field", Physica A., 98, 307-312 (1979).35 Ross, M.J., Vesovic, V., Wakeham, W.A., "Alternative expressions for the thermal conductivity of dilute gas mixtures", Physica A., 183, 519-536 (1992).36 Millat, J., Vesovic, V., Wakeham, W.A., "On the validity of the simplified expression for the thermal conductivity of Thijsse et al.", Physica A., 148, 153-164 (1988).37 Vesovic, V., Wakeham, W.A., "Practical, accurate expressions for the thermal conductivity of atom-diatom gas mixtures", Physica A., 201, 501-514 (1993).38 Schreiber, M., Vesovic, V., Wakeham, W.A., "Thermal conductivity of atom-molecule dilute gas mixtures", High Temp. High Press., 29, 653-658 (1997).39 Najafi, B., Ghayeb, Y., Parsafar, G.A., "New correlation functions for viscosity calculation of gases over wide temperature and pressure ranges", Int. J. Thermophys., 21, 1011-1031 (2000).40 O'Hara, H., Smith, F.J., "Transport collision integrals for a dilute gas", Comput. Phys. Commun., 2, 47-54 (1971).41 Mohammad-Aghaie, D., Papari, M.M., Moghadasi, J., Haghighi, B., "Assessment of the effect of mixing rules on transport properties of gas mixtures", B. Chem. Soc. Jpn., 81, 1219-1229 (2008).42 Al-Matar, A.K., Rockstraw, D.A., "A generating equation for mixing rules and two new mixing rules for interatomic potential energy parameters", J. Comput. Chem., 25, 660-668 (2004).43 Halgren, T.A., "The representation of van der Waals (vdW) interactions in molecular mechanics force fields: Potential form, combination rules, and vdW parameters", J. Am. Chem. Soc., 114, 7827-7843 (1992).44 Maitland, G.C., Wakeham, W.A., "Direct determination of intermolecular potentials from gaseous transport-coefficients alone. 1. Method", Mol. Phys., 35, 1429-1442 (1978).45 Richenberg, D., "New simplified methods for the estimation of the viscosities of gas mixtures at moderate pressures", Natl. Eng. Lab Rept. Chem., 53, Scotland (1977).46 Davidson, T.A., A Simple and Accurate Method for Calculating Viscosity of Gaseous Mixtures, U. S. Bureau of Mines, RI9456 (1993).47 Poling, B.E., Prausnitz, J.M., O'Connell, J.P., The Properties of Gases and Liquids, McGraw-Hill, New York (2001).48 Friend, D.G., NIST Mixture Properties Database Version 9.08 Users' Guide, National Institute of Standards and Technology, Boulder, USA (1992). |