[1] L.L. Hench, Bioceramics:from concept to clinic, J. Am. Ceram. Soc. 74(1991) 1487-1510. [2] S.M. Best, A.E. Porter, E.S. Thian, J. Huang, Bioceramics:past, present and for the future, J. Eur. Ceram. Soc. 28(2008) 1319-1327. [3] M. Vallet-Regí, E. Ruiz-Hernández, Bioceramics:from bone regeneration to cancer nanomedicine, Adv. Mater. 23(2011) 5177-5218. [4] H. Liu, G.W. Xu, Y.F. Wang, H.S. Zhao, S. Xiong, Y. Wu, B.C. Heng, C.R. An, G.H. Zhu, D.H. Xie, Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1alpha autocrine/paracrine signaling loop, Biomaterials 49(2015) 103-112. [5] F.S. Shirazi, M. Mehrali, B. Nasiri-Tabrizi, S. Baradaran, S. Gharehkhani, H.S.C. Metselaar, N.A. Kadri, N.A. Abu Osman, Mechanochemical synthesis and characterization of silver (Ag+) and tantalum (Ta5+) doped calciumsilicate nanopowders, Sci. Adv. Mater. 7(2015) 2664-2671. [6] S. Baradaran, E. Moghaddam, B. Nasiri-Tabrizi, W.J. Basirun, M. Mehrali, M. Sookhakian, M. Hamdi, Y. Alias, Characterization of nickel-doped biphasic calcium phosphate/graphene nanoplatelet composites for biomedical application, Mater. Sci. Eng. C 49(2015) 656-668. [7] S. Baradaran, E. Moghaddam, W.J. Basirun, M. Mehrali, M. Sookhakian, M. Hamdi, M.R. Nakhaei Moghaddam, Y. Alias, Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite, Carbon 69(2014) 32-45. [8] F.S. Shirazi, M. Mehrali, A.A. Oshkour, H.S.C. Metselaar, N.A. Kadri, N.A. Abu Osman, Mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications, J. Mech. Behav. Biomed. Mater. 30(2014) 168-175. [9] S.F.S. Shirazi, S. Gharehkhani, H.S.C. Metselaar, B. Nasiri-Tabrizi, H. Yarmand, M. Ahmadi, N.A.A. Osman, Ion size, loading, and charge determine the mechanical properties, surface apatite, and cell growth of silver and tantalum doped calciumsilicate, RSC Adv. 6(2016) 190-200. [10] M. Šupová, Substituted hydroxyapatites for biomedical applications:a review, Ceram. Int. 41(2015) 9203-9231. [11] T.J.Webster, E.A. Massa-Schlueter, J.L. Smith, E.B. Slamovich, Osteoblast response to hydroxyapatite doped with divalent and trivalent cations, Biomaterials 25(2004) 2111-2121. [12] S. Dasgupta, S.S. Banerjee, A. Bandyopadhyay, S. Bose, Zn- and Mg-doped hydroxyapatite nanoparticles for controlled release of protein, Langmuir 26(2010) 4958-4964. [13] B. Nasiri-Tabrizi, E. Zalnezhad, B. Pingguan-Murphy, W.J. Basirun, A.M.S. Hamouda, S. Baradaran, Structural and morphological study of mechanochemically synthesized crystalline nanoneedles of Zr-doped carbonated chlorapatite, Mater. Lett. 149(2015) 100-104. [14] B. Nasiri-Tabrizi, B. Pingguan-Murphy,W.J. Basirun, S. Baradaran, Crystallization behavior of tantalum and chlorine co-substituted hydroxyapatite nanopowders, J. Ind. Eng. Chem. 33(2016) 316-325. [15] N. Kose, A. Otuzbir, C. Pekşen, A. Kiremitçi, A. Doğan, A silver ion-doped calcium phosphate-based ceramic nanopowder-coated prosthesis increased infection resistance, Clin. Orthop. Relat. Res. 471(2013) 2532-2539. [16] A. Fahami, G.W. Beall, T. Betancourt, Synthesis, bioactivity and zeta potential investigations of chlorine and fluorine substituted hydroxyapatite, Mater. Sci. Eng. C 59(2016) 78-85. [17] A. Fahami, B. Nasiri-Tabrizi, R. Ebrahimi-Kahrizsangi,Mechanosynthesis and characterization of chlorapatite nanopowders, Mater. Lett. 110(2013) 117-121. [18] B. Nasiri-Tabrizi, A. Fahami, Mechanosynthesis of nanosized B-type carbonated fluorapatite, Mater. Lett. 134(2014) 42-46. [19] S.M. Toker, A. Tezcaner, Z. Evis,Microstructure, microhardness, and biocompatibility characteristics of yttrium hydroxyapatite doped with fluoride, J. Biomed. Mater. Res. B Appl. Biomater. 96(2011) 207-217. [20] G. Renaudin, E. Jallot, J.M. Nedelec, Effect of strontium substitution on the composition and microstructure of sol-gel derived calciumphosphates, J. Sol-Gel Sci. Technol. 51(2009) 287-294. [21] C. Shi, J. Gao, M.Wang, J. Fu, D.Wang, Y. Zhu, Ultra-trace silver-doped hydroxyapatite with non-cytotoxicity and effective antibacterial activity, Mater. Sci. Eng. C 55(2015) 497-505. [22] X. Yuan, B. Zhu, G. Tong, Y. Su, X. Zhu, Wet-chemical synthesis of Mg-doped hydroxyapatite nanoparticles by step reaction and ion exchange processes, J. Mater. Chem. B 1(2013) 6551-6559. [23] N.S.V. Capanema, A.A.P. Mansur, S.M. Carvalho, A.R.P. Silva, V.S. Ciminelli, H.S. Mansur, Niobium-doped hydroxyapatite bioceramics:synthesis, characterization and in vitro cytocompatibility, Materials 8(2015) 4191-4209. [24] J. Ma, J. Qin, Graphene-like zinc substituted hydroxyapatite, Cryst. Growth Des. 15(2015) 1273-1279. [25] M. Sadat-Shojai, M.T. Khorasani, E. Dinpanah-Khoshdargi, A. Jamshidi, Synthesis methods for nanosized hydroxyapatite with diverse structures, Acta Biomater. 9(2013) 7591-7621. [26] B. Nasiri-Tabrizi, A. Fahami, Production of poorly crystalline tricalcium phosphate nanopowders using different mechanochemical reactions, J. Ind. Eng. Chem. 20(2014) 1236-1242. [27] B. Nasiri-Tabrizi, A. Fahami, Reaction mechanisms of synthesis and decomposition of fluorapatite-zirconia composite nanopowders, Ceram. Int. 39(2013) 5125-5136. [28] S. Gomes, G. Renaudin, E. Jallot, J.-M. Nedelec, Structural characterization and biological fluid interaction of sol-gel-derived Mg-substituted biphasic calcium phosphate ceramics, ACS Appl. Mater. Interfaces 1(2009) 505-513. [29] M.A. Lopes, J.C. Knowles, J.D. Santos, Structural insights of glass-reinforced hydroxyapatite composites by Rietveld refinement, Biomaterials 21(2000) 1905-1910. [30] K. Kandori, S. Toshima, M. Wakamura, M. Fukusumi, Y. Morisada, Effects of modification of calcium hydroxyapatites by trivalent metal ions on the protein adsorption behavior, J. Phys. Chem. B 114(2010) 2399-2404. [31] O. Kaygili, C. Tatar, F. Yakuphanoglu, S. Keser, Nano-crystalline aluminumcontaining hydroxyapatite based bioceramics:synthesis and characterization, J. Sol-Gel Sci. Technol. 65(2013) 105-111. [32] C. Suryanarayana, N. Al-Aqeeli, Mechanically alloyed nanocomposites, Prog. Mater. Sci. 58(2013) 383-502. [33] L. Takacs, Self-sustaining reactions induced by ball milling, Prog. Mater. Sci. 47(2002) 355-414. [34] E. Landi, A. Tampieri, G. Celotti, S. Sprio, Densification behaviour andmechanisms of synthetic hydroxyapatites, J. Eur. Ceram. Soc. 20(2000) 2377-2387. [35] J. Rodriguez-Carvajal, Recent developments of the program FULLPROF, commission on powder diffraction (IUCr), Newsletter 26(2001) 12-19. [36] J. Terra, E.R. Dourado, J.G. Eon, D.E. Ellis, G. Gonzalez, A.M. Rossi, The structure of strontium-doped hydroxyapatite:an experimental and theoretical study, Phys. Chem. Chem. Phys. 11(2009) 568-577. [37] L. Kumar, P. Kumar, A. Narayan, M. Kar, Rietveld analysis of XRD patterns of different sizes of nanocrystalline cobalt ferrite, Int. Nano Lett. 3(2013) 1-12. [38] M. Bhagwat, A.V. Ramaswamy, A.K. Tyagi, V. Ramaswamy, Rietveld refinement study of nanocrystalline copper doped zirconia, Mater. Res. Bull. 38(2003) 1713-1724. [39] A. Sarkar, S. Kannann, In situ synthesis, fabrication and Rietveld refinement of the hydroxyapatite/titania composite coatings on 316LSS, Ceram. Int. 40(2014) 6453-6463. [40] N.G. Jovic, A.S. Masadeh, A.S. Kremenovic, B.V. Antic, J.L. Blanusa, N.D. Cvjeticanin, G.F. Goya, M.V. Antisari, E.S. Bozin, Effect of thermal annealing on structural and magnetic properties of lithium ferrite nanoparticles, J. Phys. Chem. 113(2009) 20559-20567. [41] S.H. Rhee, Synthesis of hydroxyapatite viamechanochemical treatment, Biomaterials 23(2002) 1147-1152. [42] J.P. Lafon, E. Champion, D. Bernache-Assollant, Processing of AB-type carbonated hydroxyapatite Ca10-x(PO4)6-x(CO3)x(OH)2-x-2y(CO3)y ceramics with controlled composition, J. Eur. Ceram. Soc. 28(2008) 139-147. [43] I.R. Gibson, W. Bonfield, Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite, J. Biomed. Mater. Res. 59(2002) 697-708. [44] B. Nasiri-Tabrizi, A. Fahami, Synthesis and characterization of fluorapatite-zirconia composite nanopowders, Ceram. Int. 39(2013) 4329-4337. [45] P. Balaz, Mechanochemistry in nanoscience and minerals engineering, first ed. Springer, Berlin Heidelberg, Germany, 2008. |