[1] K. Baek, D.H. Kim, S.W. Park, B.G. Ryu, T. Bajargal, J.S. Yang, Electrolyte conditioning-enhanced electrokinetic remediation of arsenic-contaminated mine tailing, J. Hazard. Mater. 161 (2009) 457-462 [2] Darmawan, S.I. Wada, Effect of clay mineralogy on the feasibility of electrokinetic soil decontamination technology, Appl. Clay Sci. 20 (2002) 283-293 [3] C. Cameselle, S. Gouveia, Electrokinetic remediation for the removal of organic contaminants in soils, Curr. Opin. Electrochem. 11 (2018) 41-47 [4] D.H. Kim, C.S. Jeon, K. Baek, S.H. Ko, J.S. Yang, Electrokinetic remediation of fluorine-contaminated soil: conditioning of anolyte, J. Hazard. Mater. 161 (2009) 565-569 [5] X. Yang, M. Zhou, L. Cang, Q. Ji, J. Xie, Enhanced electrokinetic remediation of heavy-metals contaminated soil in presence tetrasodium N, N-bis(carboxymethyl) glutamic acid (GLDA) as chelator, Int. J. Electrochem. Sci. 15 (2020) 696-709 [6] C. Cameselle, S. Gouveia, A. Cabo, Analysis and optimization of Mn removal from contaminated solid matrixes by electrokinetic remediation, Int. J. Environ. Res. Public Health 17 (2020) 1820 [7] A.I.A. Chowdhury, J.I. Gerhard, D. Reynolds, B.E. Sleep, D.M. O’Carroll, Electrokinetic-enhanced permanganate delivery and remediation of contaminated low permeability porous media, Water Res. 113 (2017) 215-222 [8] R. Fu, D. Wen, X. Xia, W. Zhang, Y. Gu, Electrokinetic remediation of chromium (Cr)-contaminated soil with citric acid (CA) and polyaspartic acid (PASP) as electrolytes, Chem. Eng. J. 316 (2017) 601-608 [9] X. Yu, F. Muhammad, Y. Yan, L. Yu, H. Li, X. Huang, B. Jiao, N. Lu, D. Li, Effect of chemical additives on electrokinetic remediation of Cr-contaminated soil coupled with a permeable reactive barrier, R. Soc. Open Sci. 6 (2019) 182138 [10] M. Ravera, C. Ciccarelli, D. Gastaldi, C. Rinaudo, C. Castelli, D. Osella, An experiment in the electrokinetic removal of copper from soil contaminated by the brass industry, Chemosphere 63 (2006) 950-955 [11] A.Z. Al-Hamdan, K.R. Reddy, Transient behavior of heavy metals in soils during electrokinetic remediation, Chemosphere 71 (2008) 860-871 [12] P. Guedes, V. Lopes, N. Couto, E.P. Mateus, C.S. Pereira, A.B. Ribeiro, Electrokinetic remediation of contaminants of emergent concern in clay soil: Effect of operating parameters, Environ. Pollut. 253 (2019) 625-635 [13] D. Turer, A. Genc, Assessing effect of electrode configuration on the efficiency of electrokinetic remediation by sequential extraction analysis, J. Hazard. Mater. 119 (2005) 167-174 [14] N. Zhu, M. Chen, X. Guo, G. Hu, Electrokinetic removal of Cu and Zn in anaerobic digestate: interrelation between metal speciation and electrokinetic treatments, J. Hazard. Mater. 286 (2015) 118-126 [15] Sh. Shahmohammadi-Kalalagh, H. Beyrami, F. Ahmadzadeh, Electrokinetic remediation of Cd contaminated soil at field condition, in: 15th Int, Conf. Environ. Sci. Technol., Rhodes, Greece [16] K. Popov, I. Glazkova, V. Yachmenev, A. Nikolayev, Electrokinetic remediation of concrete: effect of chelating agents, Environ. Pollut. 153 (2008) 22-28 [17] M.V. Vázquez, D.A. Vasco, F. Hernández-Luis, D. Grandoso, M. Lemus, D.M. Benjumea, C.D. Arbelo, Electrokinetic study of the buffer capacity of some soils from Tenerife.: comparison with a volumetric technique, Geoderma 148 (2009) 261-266 [18] H.H. Lee, J.W. Yang, A new method to control electrolytes pH by circulation system in electrokinetic soil remediation, J. Hazard. Mater. 77 (2000) 227-240 [19] P.R. Buchireddy, R.M. Bricka, D.B. Gent, Electrokinetic remediation of wood preservative contaminated soil containing copper, chromium, and arsenic, J. Hazard. Mater. 162 (2009) 490-497 [20] J.H. Chang, C.D. Dong, S.Y. Shen, The lead contaminated land treated by the circulation-enhanced electrokinetics and phytoremediation in field scale, J. Hazard. Mater. 368 (2019) 894-898 [21] K.R. Reddy, S. Danda, R.E. Saichek, Complicating factors of using ethylenediamine tetraacetic acid to enhance electrokinetic remediation of multiple heavy metals in clayey soils, J. Environ. Eng. 130 (2004) 1357-1366 [22] J.Y. Wang, X.J. Huang, J.C.M. Kao, O. Stabnikova, Simultaneous removal of organic contaminants and heavy metals from kaolin using an upward electrokinetic soil remediation process, J. Hazard. Mater. 144 (2007) 292-299 [23] S.O. Kim, S.H. Moon, K.W. Kim, Removal of heavy metals from soils using enhanced electrokinetic soil processing, Water Air Soil Pollut. 125 (2001) 259-272 [24] A. Giannis, E. Gidarakos, A. Skouta, Transport of cadmium and assessment of phytotoxicity after electrokinetic remediation, J. Environ. Manage. 86 (2008) 535-544 [25] R.E. Saichek, K.R. Reddy, Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil, Chemosphere 51 (2003) 273-287 [26] S. Zhang, J. Zhang, X. Cheng, Y. Mei, C. Hu, M. Wang, J. Li, Electrokinetic remediation of soil containing Cr (VI) by photovoltaic solar panels and a DC-DC converter, J. Chem. Technol. Biotechnol. 90 (2015) 693-700 [27] Y. Yan, F. Xue, F. Muhammad, L. Yu, F. Xu, B. Jiao, Y. Shiau, D. Li, Application of iron-loaded activated carbon electrodes for electrokinetic remediation of chromium-contaminated soil in a three-dimensional electrode system, Sci. Rep. 8 (2018) 1-11 [28] J. Virkutyte, M. Sillanpää, P. Latostenmaa, Electrokinetic soil remediation—critical overview, Sci. Total Environ. 289 (2002) 97-121 [29] Brian J. Alloway, Heavy Metals in Soils, Chapman and Hall, London, UK (1995) [30] G. Sposito, L.J. Lund, A.C. Chang, Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases, Soil Sci. Soc. Am. J. 46 (1982) 260-264 [31] Y. Gu, A.T. Yeung, H. Li, Enhanced electrokinetic remediation of cadmium-contaminated natural clay using organophosphonates in comparison with EDTA, Chin. J. Chem. Eng. 26 (2018) 1152-1159 [32] C. Yuan, T.-S. Chiang, Enhancement of electrokinetic remediation of arsenic spiked soil by chemical reagents, J. Hazard. Mater. 152 (2008) 309-315 [33] S. Yuan, C. Wu, J. Wan, X. Lu, In situ removal of copper from sediments by a galvanic cell, J. Environ. Manage. 90 (2009) 421-427 [34] A. Altaee, R. Smith, S. Mikhalovsky, The feasibility of decontamination of reduced saline sediments from copper using the electrokinetic process, J. Environ. Manage. 88 (2008) 1611-1618 [35] C. Cameselle, A. Pena, Enhanced electromigration and electro-osmosis for the remediation of an agricultural soil contaminated with multiple heavy metals, Process Saf. Environ. Prot. 104 (2016) 209-217 [36] M. Cherifi, N. Boutemine, D.F. Laefer, S. Hazourli, Effect of sludge pH and treatment time on the electrokinetic removal of aluminum from water potabilization treatment sludge, Comptes Rendus Chim. 19 (2016) 511-516 [37] S. Zhu, D. Han, M. Zhou, Y. Liu, Ammonia enhanced electrokinetics coupled with bamboo charcoal adsorption for remediation of fluorine-contaminated kaolin clay, Electrochim. Acta 198 (2016) 241-248 [38] T. Li, S. Yuan, J. Wan, X. Lu, Hydroxypropyl-β-cyclodextrin enhanced electrokinetic remediation of sediment contaminated with HCB and heavy metals, J. Hazard. Mater. 176 (2010) 306-312 [39] B.G. Ryu, J.S. Yang, D.H. Kim, K. Baek, Pulsed electrokinetic removal of Cd and Zn from fine-grained soil, J. Appl. Electrochem. 40 (2010) 1039-1047 [40] K.J. Kim, D.H. Kim, J.C. Yoo, K. Baek, Electrokinetic extraction of heavy metals from dredged marine sediment, Sep. Purif. Technol. 79 (2011) 164-169 [41] L. Yuan, X. Xu, H. Li, Q. Wang, N. Wang, H. Yu, The influence of macroelements on energy consumption during periodic power electrokinetic remediation of heavy metals contaminated black soil, Electrochim. Acta 235 (2017) 604-612 [42] A. Altin, M. Degirmenci, Lead (II) removal from natural soils by enhanced electrokinetic remediation, Sci. Total Environ. 337 (2005) 1-10 [43] M. Villen-Guzman, A. Garcia-Rubio, J.M. Paz-Garcia, J.M. Rodriguez-Maroto, F. Garcia-Herruzo, C. Vereda-Alonso, C. Gomez-Lahoz, The use of ethylenediaminetetraacetic acid as enhancing agent for the remediation of a lead polluted soil, Electrochim. Acta 181 (2015) 82-89 [44] Y. Xu, C. Zhang, M. Zhao, H. Rong, K. Zhang, Q. Chen, Comparison of bioleaching and electrokinetic remediation processes for removal of heavy metals from wastewater treatment sludge, Chemosphere 168 (2017) 1152-1157 [45] D.M. Zhou, C.F. Deng, A.N. Alshawabkeh, L. Cang, Effects of catholyte conditioning on electrokinetic extraction of copper from mine tailings, Environ. Int. 31 (2005) 885-890 [46] K.R. Reddy, R.E. Saichek, K. Maturi, P. Ala, Effects of soil moisture and heavy metal concentrations on electrokinetic remediation, Indian Geotech. J. 32 (2002) 258-288 [47] S.Y. Shin, S.M. Park, K. Baek, Soil moisture could enhance electrokinetic remediation of arsenic-contaminated soil, Environ. Sci. Pollut. Res. 24 (2017) 98 |