[1] Z. Liao, Y.H. Zhu, G.T. Sun, L. Qiu, M.Q. Zhu, Micromorphology control of the lignin-based activated carbon and the study on the pyrolysis and adsorption kinetics, Ind. Crops Prod. 175 (2022) 114266. [2] X.L. Lin, P. Wang, R.T. Hong, X. Zhu, Y.C. Liu, X.J. Pan, X.Q. Qiu, Y.L. Qin, Fully lignocellulosic biomass-based double-layered porous hydrogel for efficient solar steam generation, Adv. Funct. Mater. 32 (51) (2022) 2209262. [3] F. Pan, Y.M. Wang, K.Q. Zhao, J. Hu, H.L. Liu, Y. Hu, Photocatalytic degradation of tetracycline hydrochloride with visible light-responsive bismuth tungstate/conjugated microporous polymer, Chin. J. Chem. Eng. 41 (2022) 488-496. [4] R. Al-Tohamy, S.S. Ali, F.H. Li, K.M. Okasha, Y.A. Mahmoud, T. Elsamahy, H.X. Jiao, Y.Y. Fu, J.Z. Sun, A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety, Ecotoxicol. Environ. Saf. 231 (2022) 113160. [5] J.Y. Lin, W.Y. Ye, M. Xie, D.H. Seo, J.Q. Luo, Y.H. Wan, B. Van der Bruggen, Environmental impacts and remediation of dye-containing wastewater, Nat. Rev. Earth Environ. 4 (2023) 785-803. [6] J. Zhou, J. Ding, H. Wan, G.F. Guan, Boosting photocatalytic degradation of antibiotic wastewater by synergy effect of heterojunction and phosphorus doping, J. Colloid Interface Sci. 582 (Pt B) (2021) 961-968. [7] Y.Y. Zhang, Z.H. Zhang, Y. Zhang, Y. Li, Y. Yuan, Shape-dependent synthesis and photocatalytic degradation by Cu2O nanocrystals: Kinetics and photocatalytic mechanism, J. Colloid Interface Sci. 651 (2023) 117-127. [8] P. Dhiman, G. Rana, A. Kumar, G. Sharma, D.N. Vo, M. Naushad, ZnO-based heterostructures as photocatalysts for hydrogen generation and depollution: A review, Environ. Chem. Lett. 20 (2) (2022) 1047-1081. [9] C. Xu, P. Ravi Anusuyadevi, C. Aymonier, R. Luque, S. Marre, Nanostructured materials for photocatalysis, Chem. Soc. Rev. 48 (14) (2019) 3868-3902. [10] Y. Boyjoo, H.Q. Sun, J. Liu, V.K. Pareek, S.B. Wang, A review on photocatalysis for air treatment: From catalyst development to reactor design, Chem. Eng. J. 310 (2017) 537-559. [11] H. Zangeneh, A.A.L. Zinatizadeh, M. Habibi, M. Akia, M. Hasnain Isa, Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review, J. Ind. Eng. Chem. 26 (2015) 1-36. [12] A.K. Chandiran, M. Abdi-Jalebi, M.K. Nazeeruddin, M. Gratzel, Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells, ACS Nano 8 (3) (2014) 2261-2268. [13] Y.J. Wang, R. Shi, J. Lin, Y.F. Zhu, Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4, Energy Environ. Sci. 4 (8) (2011) 2922-2929. [14] K.S. Ranjith, R.B. Castillo, M. Sillanpaa, R.T. Rajendra Kumar, Effective shell wall thickness of vertically aligned ZnO-ZnS core-shell nanorod arrays on visible photocatalytic and photo sensing properties, Appl. Catal. B Environ. 237 (2018) 128-139. [15] D.L. Zhao, G.D. Sheng, C.L. Chen, X.K. Wang, Enhanced photocatalytic degradation of methylene blue under visible irradiation on graphene@TiO2 dyade structure, Appl. Catal. B Environ. 111 (2012) 303-308. [16] S. Ragupathy, A. Priyadharsan, M.S. AlSalhi, S. Devanesan, L. Guganathan, M. Santhamoorthy, S.C. Kim, Effect of doping and loading Parameters on photocatalytic degradation of brilliant green using Sn doped ZnO loaded CSAC, Environ. Res. 210 (2022) 112833. [17] D.S. Qiao, Z.H. Li, J.Y. Duan, X.P. He, Adsorption and photocatalytic degradation mechanism of magnetic graphene oxide/ZnO nanocomposites for tetracycline contaminants, Chem. Eng. J. 400 (2020) 125952. [18] B.P. Zhang, D.J. Yang, X.Q. Qiu, Y. Qian, H. Wang, C.H. Yi, D.Q. Zhang, Fabricating ZnO/lignin-derived flower-like carbon composite with excellent photocatalytic activity and recyclability, Carbon 162 (2020) 256-266. [19] A. Saha, A. Moya, A. Kahnt, D. Iglesias, S. Marchesan, R. Wannemacher, M. Prato, J.J. Vilatela, D.M. Guldi, Interfacial charge transfer in functionalized multi-walled carbon nanotube@TiO2 nanofibres, Nanoscale 9 (23) (2017) 7911-7921. [20] H. Zhang, X.J. Lv, Y.M. Li, Y. Wang, J.H. Li, P25-graphene composite as a high performance photocatalyst, ACS Nano 4 (1) (2010) 380-386. [21] K. Babel, K. Jurewicz, KOH activated lignin based nanostructured carbon exhibiting high hydrogen electrosorption, Carbon 46 (14) (2008) 1948-1956. [22] A. Bjelic, M. Grilc, M. Hus, B. Likozar, Hydrogenation and hydrodeoxygenation of aromatic lignin monomers over Cu/C, Ni/C, Pd/C, Pt/C, Rh/C and Ru/C catalysts: Mechanisms, reaction micro-kinetic modelling and quantitative structure-activity relationships, Chem. Eng. J. 359 (2019) 305-320. [23] X.L. Lin, D.L. Chen, X.Q. Qiu, B.W. Liu, J.L. Liu, X.F. Wang, S.R. Sun, Y.L. Qin, Lignin-metal supramolecular framework strategy of self-healing carbon-coated CoRu alloy nanocatalyst for efficient overall water splitting, Adv. Energy Mater. 14 (32) (2024) 2303442. [24] J.L. Liu, X.Q. Qiu, S.R. Sun, B.W. Liu, Y.H. Tian, Y.L. Qin, X.L. Lin, Synthesis of highly dispersed carbon-encapsulated Ru-FeNi nanocatalysts by a lignin-metal supramolecular framework strategy for durable water-splitting electrocatalysis, Green Chem. 26 (13) (2024) 8020-8029. [25] D.L. Chen, J.L. Liu, X.Q. Qiu, B.W. Liu, X.F. Wang, Z.J. Qiu, X.L. Lin, Y.L. Qin, Lignin-assisted alloying engineering of CoNiRu trimetallic nano-catalyst for effective overall water splitting, AlChE. J. 70 (3) (2024) e18323. [26] Y. Qi, B.W. Liu, X.Q. Qiu, X.Z. Zeng, Z.C. Luo, W.D. Wu, Y.C. Liu, L.H. Chen, X.H. Zu, H.F. Dong, X.L. Lin, Y.L. Qin, Simultaneous oxidative cleavage of lignin and reduction of furfural via efficient electrocatalysis by P-doped CoMoO4, Adv. Mater. 35 (14) (2023) e2208284. [27] Y.L. Qin, Y.Z. Chen, X.Z. Zeng, Y.C. Liu, X.L. Lin, W.L. Zhang, X.Q. Qiu, MoNi4-NiO heterojunction encapsulated in lignin-derived carbon for efficient hydrogen evolution reaction, Green Energy Environ. 8 (6) (2023) 1728-1736. [28] X.L. Lin, J.L. Liu, X.Q. Qiu, B.W. Liu, X.F. Wang, L.H. Chen, Y.L. Qin, Ru-FeNi alloy heterojunctions on lignin-derived carbon as bifunctional electrocatalysts for efficient overall water splitting, Angew. Chem. Int. Ed 62 (33) (2023) e202306333. [29] X.L. Lin, J.L. Liu, L.J. Wu, L.H. Chen, Y. Qi, Z.J. Qiu, S.R. Sun, H.F. Dong, X.Q. Qiu, Y.L. Qin, In situ coupling of lignin-derived carbon-encapsulated CoFe-CoxN heterojunction for oxygen evolution reaction, AlChE. J. 68 (10) (2022) e17785. [30] Y.Q. She, X.W. Li, Y.Q. Zheng, D. Chen, X.H. Rui, X.L. Lin, Y.L. Qin, Natural lignin: A sustainable and cost-effective electrode material for high-temperature Na-ion battery, Energy Environ. Mater. 7 (2) (2024) e12538. [31] S.Y. Chen, S.C. Shen, X. Yan, J. Mi, G.H. Wang, J.N. Zhang, Y.J. Zhou, Synthesis of surfactants from alkali lignin for enhanced oil recovery, j dispers sci technol 37 (11) (2016) 1574-1580. [32] U. Holzwarth, N. Gibson, The scherrer equation versus the ‘Debye-scherrer equation’, Nat. Nanotechnol. 6 (2011) 534. [33] D. Del Buono, F. Luzi, C. Tolisano, D. Puglia, A. Di Michele, Synthesis of a lignin/zinc oxide hybrid nanoparticles system and its application by nano-priming in maize, Nanomaterials 12 (3) (2022) 568. [34] M.F. Xi, K.P. Cui, M.S. Cui, Y. Ding, Z. Guo, Y.H. Chen, C.X. Li, X.Y. Li, Enhanced norfloxacin degradation by iron and nitrogen Co-doped biochar: Revealing the radical and nonradical co-dominant mechanism of persulfate activation, Chem. Eng. J. 420 (2021) 129902. [35] Y. Wang, L.X. Wang, X.Y. Deng, H.T. Gao, A facile pyrolysis synthesis of biochar/ZnO passivator: Immobilization behavior and mechanisms for Cu (II) in soil, Environ. Sci. Pollut. Res. Int. 27 (2) (2020) 1888-1897. [36] S.L. Yu, J. Zhou, Y.M. Ren, Z.W. Yang, M. Zhong, X.Q. Feng, B.T. Su, Z.Q. Lei, Excellent adsorptive-photocatalytic performance of zinc oxide and biomass derived N, O-contained biochar nanocomposites for dyes and antibiotic removal, Chem. Eng. J. 451 (2023) 138959. [37] G. Dong, C. Huang, F.Y. Chen, X.Q. Liu, Z. Li, X.L. Su, T. Zeng, Y.X. Chen, Y.H. Chen, Y. Wang, Construction of electron rich Fe active sites by FeCu alloy anchoring on carbon nitride for photocatalytic nitrogen reduction, Rare Met. 43 (4) (2024) 1570-1579. [38] M. Ben Ali, H.H. Yolcu, H. Elhouichet, B. Sieber, A. Addad, L. Boussekey, M. Moreau, M. Ferid, S. Szunerits, R. Boukherroub, Hydrothermal synthesis of ZTO/graphene nanocomposite with excellent photocatalytic activity under visible light irradiation, J. Colloid Interface Sci. 473 (2016) 66-74. [39] H.Y. Hou, L. Wang, K. Meng, J.X. Qiu, J. Zhu, The reutilization of expired waste zinc gluconate for ZnO/C anode in lithium-ion battery, Surf. Innov. 8 (1-2) (2020) 55-64. [40] X.L. Lin, X. Fei, D.L. Chen, Y. Qi, Q.Z. Xu, Y.C. Liu, Q. Zhang, S. Li, T.J. Wang, Y.L. Qin, X.Q. Qiu, Efficient catalytic upgrading of ethanol to higher alcohols via inhibiting C-C cleavage and promoting C-C coupling over biomass-derived NiZn@NC catalysts, ACS Catal. 12 (19) (2022) 11573-11585. [41] Z.Q. Ma, Q.F. Sun, J.W. Ye, Q.F. Yao, C. Zhao, Study on the thermal degradation behaviors and kinetics of alkali lignin for production of phenolic-rich bio-oil using TGA-FTIR and Py-GC/MS, J. Anal. Appl. Pyrolysis 117 (2016) 116-124. [42] D.C. Bai, Z.T. Wei, X.Q. Qiu, X.L. Lin, Bi-activation engineering of lignin-derived porous carbon adsorbent for highly efficient water purification, Ind. Eng. Chem. Res. 62 (34) (2023) 13541-13553. [43] H. Wang, X.Q. Qiu, W.F. Liu, D.J. Yang, Facile preparation of well-combined lignin-based carbon/ZnO hybrid composite with excellent photocatalytic activity, Appl. Surf. Sci. 426 (2017) 206-216. [44] H.L. Wang, L.S. Zhang, Z.G. Chen, J.Q. Hu, S.J. Li, Z.H. Wang, J.S. Liu, X.C. Wang, Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances, Chem. Soc. Rev. 43 (15) (2014) 5234-5244. [45] D.L. Guo, S.B. Wu, G.J. Lyu, H.P. Guo, Effect of molecular weight on the pyrolysis characteristics of alkali lignin, Fuel 193 (2017) 45-53. [46] Y.M. Su, J.B. Li, Z.Z. Luo, B. Lu, P. Li, Microstructure, growth process and enhanced photocatalytic activity of flower-like ZnO particles, RSC Adv. 6 (9) (2016) 7403-7408. [47] X.Y. Shen, H.M. Shao, Y. Liu, Y.C. Zhai, Synthesis and photocatalytic performance of ZnO with flower-like structure from zinc oxide ore, J. Mater. Sci. Technol. 51 (2020) 1-7. [48] X.M. Li, J.L. Xu, J.X. Shi, X.X. Luo, Rapid and efficient adsorption of tetracycline from aqueous solution in a wide pH range by using iron and aminoacetic acid sequentially modified hierarchical porous biochar, Bioresour. Technol. 346 (2022) 126672. [49] Y.F. Ma, M. Li, P. Li, L. Yang, L. Wu, F. Gao, X.B. Qi, Z.L. Zhang, Hydrothermal synthesis of magnetic sludge biochar for tetracycline and ciprofloxacin adsorptive removal, Bioresour. Technol. 319 (2021) 124199. [50] B. Weng, M.Y. Qi, C. Han, Z.R. Tang, Y.J. Xu, Photocorrosion inhibition of semiconductor-based photocatalysts: Basic principle, current development, and future perspective, ACS Catal. 9 (5) (2019) 4642-4687. [51] X.B. Li, S.A. Bartlett, J.M. Hook, I. Sergeyev, E.B. Clatworthy, A.F. Masters, T. Maschmeyer, Salt-enhanced photocatalytic hydrogen production from water with carbon nitride nanorod photocatalysts: Cation and pH dependence, J. Mater. Chem. A 7 (32) (2019) 18987-18995. [52] R. Resende Leite, R. Colombo, F. Eduardo Bimbi Jr, M. Roberto de Vasconcelos Lanza, H. da Silva Barud, C. Ramos Moreira Afonso, M. Ines Basso Bernardi, Precursor effect on the hydrothermal synthesis of pure ZnO nanostructures and enhanced photocatalytic performance for norfloxacin degradation, Chem. Eng. J. 496 (2024) 154374. [53] Y. He, Y.F. Wang, J. Hu, K.J. Wang, Y.W. Zhai, Y.Z. Chen, Y.B. Duan, Y.T. Wang, W.J. Zhang, Photocatalytic property correlated with microstructural evolution of the biochar/ZnO composites, J. Mater. Res. Technol. 11 (2021) 1308-1321. [54] F. Yu, F.Y. Tian, H.W. Zou, Z.H. Ye, C. Peng, J.S. Huang, Y.L. Zheng, Y. Zhang, Y.C. Yang, X.Q. Wei, B. Gao, ZnO/biochar nanocomposites via solvent free ball milling for enhanced adsorption and photocatalytic degradation of methylene blue, J. Hazard. Mater. 415 (2021) 125511. [55] W.P. Utomo, P.A.I. Afifah, A.I. Rozafia, A.A. Mahardika, E. Santoso, R. Liu, D. Hartanto, Modulation of particle size and morphology of zinc oxide in graphitic carbon nitride/zinc oxide composites for enhanced photocatalytic degradation of methylene blue, Surf. Interfaces 46 (2024) 104017. [56] M.Z. Hussain, G.S. Pawar, Z. Huang, A. Ali Tahir, R.A. Fischer, Y.Q. Zhu, Y.D. Xia, Porous ZnO/Carbon nanocomposites derived from metal organic frameworks for highly efficient photocatalytic applications: A correlational study, Carbon 146 (2019) 348-363. [57] S.S. Huang, J.R. Zhao, C.H. Wu, X. Wang, S.M. Fei, Q. Zhang, Q. Wang, Z.W. Chen, K. Uvdal, Z.J. Hu, ZIF-assisted construction of magnetic multiple core-shell Fe3O4@ZnO@N-doped carbon composites for effective photocatalysis, Chem. Eng. Sci. 209 (2019) 115185. [58] J.Y. Hu, R. Yang, Z.H. Li, Y.Q. Sun, L.B. Qu, A. Nti Kani, In-situ growth of ZnO globular on g-C3N4 to fabrication binary heterojunctions and their photocatalytic degradation activity on tetracyclines, Solid State Sci. 92 (2019) 60-67. [59] Y. Liu, G.R. Wang, Y.B. Li, Z.L. Jin, 2D/1D Zn0.7Cd0.3S p-n heterogeneous junction enhanced with NiWO4 for efficient photocatalytic hydrogen evolution, J. Colloid Interface Sci. 554 (2019) 113-124. [60] Q.S. Jiang, H.L. Yu, C.L. Zhao, Z.L. Han, J.P. Li, J.J. Zhang, Z.Q. Cheng, In-situ construction of magnetic raspberry-like ZnO/C supporting different transition metal (Fe, Co, Ni) species with high adsorption-photocatalysis efficiency, J. Clean. Prod. 395 (2023) 136443. [61] Y. Bao, R.Y. Guo, M. Gao, Q.L. Kang, J.Z. Ma, Morphology control of 3D hierarchical urchin-like hollow SiO2@TiO2 spheres for photocatalytic degradation: Influence of calcination temperature, J. Alloys Compd. 853 (2021) 157202. |