[1] G. Crabtree, The coming electric vehicle transformation, Science 366 (6464) (2019) 422-424. [2] L.L. Fan, Z.H. Li, N.P. Deng, Recent advances in vanadium-based materials for aqueous metal ion batteries: Design of morphology and crystal structure, evolution of mechanisms and electrochemical performance, Energy Storage Mater. 41 (2021) 152-182. [3] W. Ling, H. Wang, Z. Chen, Z.Y. Ji, J.Q. Wang, J. Wei, Y. Huang, Intrinsic structure modification of electrode materials for aqueous metal-ion and metal-air batteries, Adv. Funct. Mater. 31 (5) (2021) 2006855. [4] S. Tian, Q. Song, X. Zhang, P.B. Gao, J.L. Mu, G.C. Yin, Y. Feng, T. Zhou, J. Zhou, Unveiling the role of oxygen doping in activated carbon cathode for potassium-ion capacitors, J. Power Sources 579 (2023) 233289. [5] D.P. Chatterjee, A.K. Nandi, A review on the recent advances in hybrid supercapacitors, J. Mater. Chem. A 9 (29) (2021) 15880-15918. [6] C. Li, L.J. Yan, X.L. Li, M.J. Wang, J. Kong, W.R. Bao, L.P. Chang, Pitch-based 3D tremella-like porous carbon with cavitary structures: Applications in symmetric capacitors and zinc ion capacitors, J. Energy Storage 86 (2024) 111220. [7] Z.D. Huang, T.R. Wang, H. Song, X.L. Li, G.J. Liang, D.H. Wang, Q. Yang, Z. Chen, L.T. Ma, Z.X. Liu, B. Gao, J. Fan, C.Y. Zhi, Effects of anion carriers on capacitance and self-discharge behaviors of zinc ion capacitors, Angew. Chem. Int. Ed 60 (2) (2021) 1011-1021. [8] K. Xiao, X.D. Jiang, S.P. Zeng, J.R. Chen, T. Hu, K. Yuan, Y.W. Chen, Porous structure-electrochemical performance relationship of carbonaceous electrode-based zinc ion capacitors, Adv. Funct. Mater. 34 (44) (2024) 2405830. [9] J.H. Huang, Z.W. Guo, Y.Y. Ma, D. Bin, Y.G. Wang, Y.Y. Xia, Recent progress of rechargeable batteries using mild aqueous electrolytes, Small Meth. 3 (1) (2019) 1800272. [10] H. Zhang, X. Liu, H.H. Li, I. Hasa, S. Passerini, Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries, Angew. Chem. Int. Ed 60 (2) (2021) 598-616. [11] A. Jagadale, X. Zhou, R. Xiong, D.P. Dubal, J. Xu, S. Yang, Lithium ion capacitors (LICs): development of the materials, Energy Storage Mater. 19 (2019) 314-329. [12] H. Wang, C. Zhu, D. Chao, Q. Yan, H.J. Fan, Nonaqueous hybrid lithium-ion and sodium-ion capacitors, Adv. Mater. 29 (46) (2017) 1702093. [13] B. Li, J.S. Zheng, H.Y. Zhang, L.M. Jin, D.J. Yang, H. Lv, C. Shen, A. Shellikeri, Y.R. Zheng, R.Q. Gong, J.P. Zheng, C.M. Zhang, Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors, Adv. Mater. 30 (17) (2018) e1705670. [14] Y.J. Wu, Y.J. Sun, Y. Tong, X. Liu, J.F. Zheng, D.X. Han, H.Y. Li, L. Niu, Recent advances in potassium-ion hybrid capacitors: Electrode materials, storage mechanisms and performance evaluation, Energy Storage Mater. 41 (2021) 108-132. [15] M.X. Chen, L. Wang, X.H. Sheng, T. Wang, J. Zhou, S.Y. Li, X.H. Shen, M. Zhang, Q.S. Zhang, X.Z. Yu, J. Zhu, B.G. Lu, An ultrastable nonaqueous potassium-ion hybrid capacitor, Adv. Funct. Mater. 30 (40) (2020) 2004247. [16] X. Zhang, S. Tian, S. Liu, T.T. Wang, J.Y. Huang, P.B. Gao, Y. Feng, J. Zhou, T. Zhou, Tellurium-doped MoS2/carbon composite nanotubes for potassium-ion capacitors, Appl. Phys. Lett. 125 (26) (2024) 263904. [17] C.R. Xu, J.L. Mu, T. Zhou, S. Tian, P.B. Gao, G.C. Yin, J. Zhou, F. Li, Surface redox pseudocapacitance boosting vanadium nitride for high-power and ultra-stable potassium-ion capacitors, Adv. Funct. Mater. 32 (38) (2022) 2206501. [18] S.T. Geng, T. Zhou, M.Y. Jia, X.Y. Shen, P.B. Gao, S. Tian, P.F. Zhou, B. Liu, J. Zhou, S.P. Zhuo, F. Li, Carbon-coated WS2 nanosheets supported on carbon nanofibers for high-rate potassium-ion capacitors, Energy Environ. Sci. 14 (5) (2021) 3184-3193. [19] P.J. Wang, X.S. Xie, Z.Y. Xing, X.H. Chen, G.Z. Fang, B.G. Lu, J. Zhou, S.Q. Liang, H.J. Fan, Mechanistic insights of Mg2+-electrolyte additive for high-energy and long-life zinc-ion hybrid capacitors, Adv. Energy Mater. 11 (30) (2021) 2101158. [20] H. Tang, J.J. Yao, Y.R. Zhu, Recent developments and future prospects for zinc-ion hybrid capacitors: a review, Adv. Energy Mater. 11 (14) (2021) 2003994. [21] J. Yin, W.L. Zhang, W.X. Wang, N.A. Alhebshi, N. Salah, H.N. Alshareef, Electrochemical zinc ion capacitors enhanced by redox reactions of porous carbon cathodes, Adv. Energy Mater. 10 (37) (2020) 2001705. [22] J. Yin, W.L. Zhang, N.A. Alhebshi, N. Salah, H.N. Alshareef, Electrochemical zinc ion capacitors: fundamentals, materials, and systems, Adv. Energy Mater. 11 (21) (2021) 2100201. [23] L.B. Dong, W. Yang, W. Yang, Y. Li, W.J. Wu, G.X. Wang, Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors, J. Mater. Chem. A 7 (23) (2019) 13810-13832. [24] S. Nagamuthu, Y.M. Zhang, Y. Xu, J.F. Sun, Y.M. Zhang, F.U. Zaman, D.K. Denis, L.R. Hou, C.Z. Yuan, Non-lithium-based metal ion capacitors: recent advances and perspectives, J. Mater. Chem. A 10 (2) (2022) 357-378. [25] L.T. Hu, P. Xiao, L.L. Xue, H.Q. Li, T.Y. Zhai, The rising zinc anodes for high-energy aqueous batteries, EnergyChem 3 (2) (2021) 100052. [26] S.Z. Cui, W.X. Miao, X.B. Wang, K.J. Sun, H. Peng, G.F. Ma, Multifunctional zincophilic hydrogel electrolyte with abundant hydrogen bonds for zinc-ion capacitors and supercapacitors, ACS Nano 18 (19) (2024) 12355-12366. [27] W.C. Du, E.H. Ang, Y. Yang, Y.F. Zhang, M.H. Ye, C.C. Li, Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries, Energy Environ. Sci. 13 (10) (2020) 3330-3360. [28] D. Sui, M.M. Wu, K.Y. Shi, C.L. Li, J.W. Lang, Y.L. Yang, X.Y. Zhang, X.B. Yan, Y.S. Chen, Recent progress of cathode materials for aqueous zinc-ion capacitors: Carbon-based materials and beyond, Carbon 185 (2021) 126-151. [29] Z.C. Sun, S.Y. Chu, X.Y. Jiao, Z.J. Li, L.Y. Jiang, Research progress of carbon cathode materials for zinc-ion capacitors, J. Energy Storage 75 (2024) 109571. [30] L.T. Hu, D.Q. Guo, G. Feng, H.Q. Li, T.Y. Zhai, Asymmetric behavior of positive and negative electrodes in carbon/carbon supercapacitors and its underlying mechanism, J. Phys. Chem. C 120 (43) (2016) 24675-24681. [31] L.T. Hu, J.X. Hou, Y. Ma, H.Q. Li, T.Y. Zhai, Multi-heteroatom self-doped porous carbon derived from swim bladders for large capacitance supercapacitors, J. Mater. Chem. A 4 (39) (2016) 15006-15014. [32] W.J. Tian, H.Y. Zhang, X.G. Duan, H.Q. Sun, G.S. Shao, S.B. Wang, Porous carbons: structure-oriented design and versatile applications, Adv. Funct. Mater. 30 (17) (2020) 1909265. [33] L.H. Zu, W. Zhang, L.B. Qu, L.L. Liu, W. Li, A.B. Yu, D.Y. Zhao, Mesoporous materials for electrochemical energy storage and conversion, Adv. Energy Mater. 10 (38) (2020) 2002152. [34] H.Q. Pan, X. Jiao, W.C. Zhang, L.L. Fan, Z.H. Yuan, C.G. Zhang, Supercapacitor with Ultra-High power and energy density enabled by Nitrogen/Oxygen-Doped interconnected hollow carbon Nano-Onions, Chem. Eng. J. 484 (2024) 149663. [35] S. Ghosh, S. Barg, S.M. Jeong, K. Ostrikov, Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors, Adv. Energy Mater. 10 (32) (2020) 2001239. [36] X. Feng, Y. Bai, M.Q. Liu, Y. Li, H.Y. Yang, X.R. Wang, C. Wu, Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials, Energy Environ. Sci. 14 (4) (2021) 2036-2089. [37] S. Radhakrishnan, A. Patra, G. Manasa, M.A. Belgami, S. Mun Jeong, C.S. Rout, Borocarbonitride-based emerging materials for supercapacitor applications: recent advances, challenges, and future perspectives, Adv. Sci. 11 (4) (2024) e2305325. [38] F. Mo, Y.Y. Wang, T.T. Song, X.L. Wu, Nitrogen and oxygen Co-doped hierarchical porous carbon for zinc-ion hybrid capacitor, J. Energy Storage 72 (2023) 108228. [39] L. Yang, X.J. He, Y.C. Wei, H.H. Bi, F. Wei, H.Q. Li, C.Z. Yuan, J.S. Qiu, Interconnected N/P Co-doped carbon nanocage as high capacitance electrode material for energy storage devices, Nano Res. 15 (5) (2022) 4068-4075. [40] D. Lintong Hu, P. Tianyou Zhai, P. Huiqiao Li, P. Yonggang Wang, Redox-mediator-enhanced electrochemical capacitors: recent advances and future perspectives, ChemSusChem 12 (6) (2019) 1118-1132. [41] N.J. Yang, S.Y. Yu, W.J. Zhang, H.M. Cheng, P. Simon, X. Jiang, Electrochemical capacitors with confined redox electrolytes and porous electrodes, Adv. Mater. 34 (34) (2022) 2202380. [42] L.T. Hu, C. Shi, K. Guo, T.Y. Zhai, H.Q. Li, Y.G. Wang, Electrochemical double-layer capacitor energized by adding an ambipolar organic redox radical into the electrolyte, Angew. Chem. Int. Ed 57 (27) (2018) 8214-8218. [43] B. Evanko, S.W. Boettcher, S.J. Yoo, G.D. Stucky, Redox-enhanced electrochemical capacitors: status, opportunity, and best practices for performance evaluation, ACS Energy Lett. 2 (11) (2017) 2581-2590. [44] B.K. Saikia, S.M. Benoy, M. Bora, J. Tamuly, M. Pandey, D. Bhattacharya, A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials, Fuel 282 (2020) 118796. [45] G.Y. Wang, X.H. Wang, J.F. Sun, Y.M. Zhang, L.R. Hou, C.Z. Yuan, Porous carbon nanofibers derived from low-softening-point coal pitch towards all-carbon potassium ion hybrid capacitors, Rare Met. 41 (11) (2022) 3706-3716. [46] Y.M. Zhang, G.Y. Wang, P. Yue, J.F. Sun, M.S. Gao, J.L. Wang, L.R. Hou, M. Chen, C.Z. Yuan, Construction of low-softening-point coal pitch derived carbon nanofiber films as self-standing anodes toward sodium dual-ion batteries, Adv. Funct. Mater. 35 (6) (2025) 2414761. [47] X.N. Chen, X.H. Wang, D. Fang, A review on C1s XPS-spectra for some kinds of carbon materials, fuller nanotub carbon Nanostruct 28 (12) (2020) 1048-1058. [48] S. Biniak, G. Szymanski, J. Siedlewski, S. A, The characterization of activated carbons with oxygen and nitrogen surface groups, Carbon 35 (12) (1997) 1799-1810. [49] P.G. Liu, W.F. Liu, Y.P. Huang, P.L. Li, J. Yan, K.Y. Liu, Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-Ion energy storage, Energy Storage Mater. 25 (2020) 858-865. [50] Y.Y. Lu, Z.W. Li, Z.Y. Bai, H.Y. Mi, C.C. Ji, H. Pang, C. Yu, J.S. Qiu, High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N Co-doped carbon cathode, Nano Energy 66 (2019) 104132. [51] Y.H. Zhang, F. Li, T.Y. Li, M.Q. Zhang, Z.Z. Yuan, G.J. Hou, J. Fu, C.K. Zhang, X.F. Li, Insights into an air-stable methylene blue catholyte towards kW-scale practical aqueous organic flow batteries, Energy Environ. Sci. 16 (1) (2023) 231-240. [52] M.Y. Tang, Q.N. Zhu, P.F. Hu, L. Jiang, R.Y. Liu, J.W. Wang, L.W. Cheng, X.H. Zhang, W.X. Chen, H. Wang, Ultrafast rechargeable aqueous zinc-ion batteries based on stable radical chemistry, Adv. Funct. Mater. 31 (33) (2021) 2102011. [53] C. Li, C.Q. Wu, K. Zhang, M.Q. Chen, Y.S. Wang, J.J. Shi, Z.Y. Tang, The charge transfer effect on SERS in a gold-decorated surface defect anatase nanosheet/methylene blue (MB) system, New J. Chem. 45 (42) (2021) 19775-19786. [54] C.Y. Li, Y.Q. Huang, K.Q. Lai, B.A. Rasco, Y.X. Fan, Analysis of trace methylene blue in fish muscles using ultra-sensitive surface-enhanced Raman spectroscopy, Food Contr. 65 (2016) 99-105. [55] O.V. Ovchinnikov, A.V. Evtukhova, T.S. Kondratenko, M.S. Smirnov, V.Y. Khokhlov, O.V. Erina, Manifestation of intermolecular interactions in FTIR spectra of methylene blue molecules, Vib. Spectrosc. 86 (2016) 181-189. [56] R. Ali, I.A.I. Ali, S. Messaoudi, F.M. Alminderej, S.M. Saleh, An effective optical chemosensor film for selective detection of mercury ions, J. Mol. Liq. 336 (2021) 116122. [57] A. Katafias, P. Kita, G. Wrzeszcz, A. Mills, Kinetics of the methylene blue oxidation by cerium(IV) in sulphuric acid solutions, Transition Met. Chem. 32 (1) (2007) 31-37. [58] H.X. Li, W.J. Shi, X.H. Zhang, Y. Liu, L.Y. Liu, J.M. Dou, Enhancement of zinc-ion storage capability by synergistic effects on dual-ion adsorption in hierarchical porous carbon for high-performance aqueous zinc-ion hybrid capacitors, J. Colloid Interface Sci. 667 (2024) 700-712. [59] R.Y. Wang, W.Q. Wang, M. Sun, Y.J. Hu, G.C. Wang, Long-lifespan zinc-ion capacitors enabled by anodes integrated with interconnected mesoporous chitosan membranes through electrophoresis-driven phase separation, Angew. Chem. Int. Ed 63 (10) (2024) e202317154. [60] W.Q. Wang, L. Gao, Z.M. Kong, B.C. Ma, M.Y. Han, G.C. Wang, C.Z. Li, Integrated construction of a long-life stretchable zinc-ion capacitor, Adv. Mater. 35 (39) (2023) e2303353. [61] J. Zeng, H. Chen, L.B. Dong, X. Guo, Anti-polyelectrolyte effect of zwitterionic hydrogel electrolytes enabling high-voltage zinc-ion hybrid capacitors, Adv. Funct. Mater. 34 (21) (2024) 2314651. |