[1] C.N. Baroud, F. Gallaire, R. Dangla, Dynamics of microfluidic droplets, Lab Chip 10 (16) (2010) 2032-2045. [2] E.Y. Basova, F. Foret, Droplet microfluidics in (bio)chemical analysis, Analyst 140 (1) (2015) 22-38. [3] J. Castillo-Leon, W.E. Svendsen, Lab-on-a-Chip Devices and Micro-Total Analysis Systems: A Practical Guide, Springer International Publishing, New York, 2015. [4] M. De Menech, P. Garstecki, F. Jousse, H.A. Stone, Transition from squeezing to dripping in a microfluidic T-shaped junction, J. Fluid Mech. 595 (2008) 141-161. [5] X. Chao, F.S. Xu, C.Q. Yao, T.T. Liu, G.W. Chen, CFD simulation of internal flow and mixing within droplets in a T-junction microchannel, Ind. Eng. Chem. Res. 60 (16) (2021) 6038-6047. [6] G.F. Christopher, J. Bergstein, N.B. End, M. Poon, C. Nguyen, S.L. Anna, Coalescence and splitting of confined droplets at microfluidic junctions, Lab Chip 9 (8) (2009) 1102-1109. [7] R. Ma, T.T. Fu, Q.D. Zhang, C.Y. Zhu, Y.G. Ma, H.Z. Li, Breakup dynamics of ferrofluid droplet in a microfluidic T-junction, J. Ind. Eng. Chem. 54 (2017) 408-420. [8] D.R. Link, S.L. Anna, D.A. Weitz, H.A. Stone, Geometrically mediated breakup of drops in microfluidic devices, Phys. Rev. Lett. 92 (5) (2004) 054503. [9] M.C. Jullien, M.J. Tsang Mui Ching, C. Cohen, L. Menetrier, P. Tabeling, Droplet breakup in microfluidic T-junctions at small capillary numbers, Phys. Fluids 21 (7) (2009) 072001. [10] Y.P. Chen, Z.L. Deng, Hydrodynamics of a droplet passing through a microfluidic T-junction, J. Fluid Mech. 819 (2017) 401-434. [11] X. Sun, C.Y. Zhu, T.T. Fu, Y.G. Ma, H.Z. Li, Dynamics of droplet breakup and formation of satellite droplets in a microfluidic T-junction, Chem. Eng. Sci. 188 (2018) 158-169. [12] A.M. Leshansky, S. Afkhami, M.C. Jullien, P. Tabeling, Obstructed breakup of slender drops in a microfluidic T junction, Phys. Rev. Lett. 108 (26) (2012) 264502. [13] D.A. Hoang, L.M. Portela, C.R. Kleijn, M.T. Kreutzer, V. van Steijn, Dynamics of droplet breakup in a T-junction, J. Fluid Mech. 717 (2013) R4. [14] X.D. Wang, C.Y. Zhu, T.T. Fu, Y.G. Ma, Critical lengths for the transition of bubble breakup in microfluidic T-junctions, Chem. Eng. Sci. 111 (2014) 244-254. [15] X.D. Wang, C.Y. Zhu, T.T. Fu, Y.G. Ma, Bubble breakup with permanent obstruction in an asymmetric microfluidic T-junction, AIChE J. 61 (3) (2015) 1081-1091. [16] X.D. Wang, C.Y. Zhu, Y.N. Wu, T.T. Fu, Y.G. Ma, Dynamics of bubble breakup with partly obstruction in a microfluidic T-junction, Chem. Eng. Sci. 132 (2015) 128-138. [17] A.M. Leshansky, L.M. Pismen, Breakup of drops in a microfluidic T junction, Phys. Fluids 21 (2) (2009) 023303. [18] B. Chen, G.J. Li, W.M. Wang, P. Wang, 3D numerical simulation of droplet passive breakup in a micro-channel T-junction using the volume-of-fluid method, Appl. Therm. Eng. 88 (2015) 94-101. [19] Y. Yan, D. Guo, S.Z. Wen, Numerical simulation of junction point pressure during droplet formation in a microfluidic T-junction, Chem. Eng. Sci. 84 (2012) 591-601. [20] K. He, Z.L. Zhang, L.Z. Zhang, W.Z. Yuan, S.M. Huang, Effects of geometrical confinement on the generation of droplets at microfluidics T-junctions with rectangle channels, Microfluid. Nanofluid. 27 (10) (2023) 67. [21] D.J.E. Harvie, M.R. Davidson, J.J. Cooper-White, M. Rudman, A parametric study of droplet deformation through a microfluidic contraction: Shear thinning liquids, Int. J. Multiph. Flow 33 (5) (2007) 545-556. [22] W.L. Cheng, R. Sadr, J. Dai, A. Han, Prediction of microdroplet breakup regime in asymmetric T-junction microchannels, Biomed. Microdevices 20 (3) (2018) 72. [23] M. Raad, S. Rezazadeh, H. Jalili, D. Abbasinezhad Fallah, A numerical study of droplet splitting in branched T-shaped microchannel using the two-phase level-set method, Adv. Mech. Eng. 13 (11) (2021) 16878140211045487. [24] E. Asghari, A. Moosavi, S.K. Hannani, Analytical and numerical study on droplet breakup in microfluidic T-junction, Chem. Eng. Process. Process. Intensif. 177 (2022) 108995. [25] I. Jafari, K. Fallah, Drop breakup in a symmetric T-junction microchannel under electric field, Microfluid. Nanofluid. 24 (12) (2020) 94. [26] C. Pozrikidis, Introduction to Theoretical Computational Fluid Dynamics, Oxford University Press, Oxford, 2011, p. 439. [27] T.T. Nguyen, V.T. Hoang, J.M. Park, A proposed model for predicting droplet breakup dynamics in microfluidic T-junction, J. Micromech. Microeng. 35 (7) (2025) 075005. [28] S.K. Jena, T. Srivastava, S.S. Bahga, S. Kondaraju, Effect of channel width on droplet generation inside T-junction microchannel, Phys. Fluids 35 (2) (2023) 022107. [29] J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100 (2) (1992) 335-354. [30] M.H. Dang, J. Yue, G.W. Chen, Numerical simulation of Taylor bubble formation in a microchannel with a converging shape mixing junction, Chem. Eng. J. 262 (2015) 616-627. [31] V.T. Hoang, J. Lim, C. Byon, J.M. Park, Three-dimensional simulation of droplet dynamics in planar contraction microchannel, Chem. Eng. Sci. 176 (2018) 59-65. [32] V.T. Hoang, T.T. Nguyen, B.-T. Truong-Le, T.A. Vo, Simultaneous effects of capillary number, viscosity ratio, and contraction ratio on droplet dynamics in contraction microchannel, J. Micromech. Microeng. 34 (11) (2024) 115007. [33] L.H.T. Do, T.T. Nguyen, V.T. Hoang, M.S. Tran, Geometric influence of width ratio and contraction ratio on droplet dynamics in microchannel using a 3D numerical simulation, Heat Transf. 53 (6) (2024) 2934-2947. [34] X.B. Li, F.C. Li, J.C. Yang, H. Kinoshita, M. Oishi, M. Oshima, Study on the mechanism of droplet formation in T-junction microchannel, Chem. Eng. Sci. 69 (1) (2012) 340-351. [35] L.H.T. Do, T.T. Nguyen, V.T. Hoang, J.W. Lee, Simultaneous influence of contact angle, capillary number, and contraction ratio on droplet dynamics in hydrophobic microchannel, Fluid Dyn. Res. 56 (3) (2024) 035508. [36] T.T. Nguyen, V.T. Hoang, Regime dynamics of droplet behavior in hydrophilic contraction microchannel, Chem. Pap. 79 (4) (2025) 2337-2345. [37] T.A. Vo, V.T. Hoang, T.T. Nguyen, Exploring the impact of droplet size and viscosity ratio on the critical capillary number for droplet breakup in T-junction microchannels, Heat Transf. Res. 56 (14) (2025) 57-68. |