1 Beyers, E., Cool, P., Vansant, E.F., “Anatase formation during the synthesis of mesoporous titania and its photocatalytic effect”, J. Phys. Chem. B, 109, 10081-10086 (2005). 2 Chen, R.Z., Du, Y., Xing, W.H., Xu, N.P., “The effect of titania structure on Ni/TiO2 catalysts for p-nitrophenol hydrogenation”, Chin. J. Chem. Eng., 14, 665-669 (2006). 3 Velegraki, T., Mantzavinos, D., “Conversion of benzoic acid during TiO2-mediated photocatalytic degradation in water”, Chem. Eng. J., 140, 15-21 (2008). 4 Hoffman, M.R., Martin, S.T., Choi, W., Bahnemann, D.W., “Environmental applications of semiconductor photocatalysis”, Chem. Rev., 95, 69-96 (1995). 5 Paola, A.D., Lopez, E.G., Ikeda, S., Marci, G., Ohatani, B., Palmisano, L., “Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2”, Catal. Today, 75, 87-93 (2002). 6 Chen, X.B., Mao, S.S., “Titanium dioxide nanomaterials:Synthesis, properties, modifications, and applications”, Chem. Rev., 107, 2891-3041 (2007). 7 Grzybowska, B., S oczynski, J., Grabowski, R., Samson, K., Gressel, I., Wcis o, K., Gengembre, L., Barbaux, Y., “Effect of doping of TiO2 support with altervalent ions on physicochemical and catalytic properties in oxidative dehydrogenation of propane of vanadia-titania catalysts”, Appl. Catal. A:General, 230, 1-10 (2002). 8 Antonelli, D. M., Ying, Y. J., “Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gel method”, Angew. Chem. Int. Ed. Engl., 34, 2014-2017 (1995). 9 Peng, T.Y., Zhao, D., Dai, K., Shi, W., Hirao, K., “Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity”, J. Phys. Chem. B, 109, 4947-4952 (2005). 10 Xu, S.H., Shang Guan, W.F., Yuan, J., Chen, M.X., Shi, J.W., “Preparation and photocatalytic properties of magnetically separable TiO2 supported on nickel ferrite”, Chin. J. Chem. Eng., 15, 190-195 (2007). 11 Zhou, M.H., Yu, J.G., Cheng, B., Yu, H.G., “Preparation and photocatalytic activity of Fe-doped mesoporous titanium dioxide nanocrystalline photocatalysts”, Mater. Chem. Phys., 93, 159-163 (2005). 12 Li, B.C., Zhai, Y.C., Liu, K.R., Zhang, Y.H., Zhang, Y., “A study on the photocatalytic activity of Al doped anatase TiO2”, J. Mol. Sci., 24, 46-50 (2008). (in Chinese) 13 Gracia, F., Holgado, J. P., Caballero, A., Gonzalez-Elipe, A.R., “Structural, optical, and photoelectrochemical properties of Mn+-TiO2 model thin film photocatalyst”, J. Phys. Chem. B, 108, 17466-17476 (2004). 14 Liu, S.Y., Liu, G.C., Feng, Q.G., “Al-doped TiO2 mesoporous materials:Synthesis and photodegradation properties”, J. Porous Mater., 17, 197–206 (2010). 15 Toda, F., “Solid state organic chemistry:Efficient reactions, remarkable yields, and stereoselectivity”, Acc. Chem. Res., 12, 480-486 (1995). 16 Yu, J.G., Yu, J.C., Ho, W., Leung, M.K P., Cheng, B., Zhang, G.K., “Effects of alcohol content and calcination temperature on the textural properties of bimodally mesoporous titania”, Appl. Catal. A:General, 255, 309-320 (2003). 17 Zhang, W.Z., Pauly, T.R., Pinnavaia, T.J., “Tailoring the framework and textural mesopores of HMS molecular sieves through an electrically neutral (SoIo) assembly pathway”, Chem. Mater., 9, 2491-2498 (1997). 18 Li, W., Zhang, M., Zhang, J.L., Han, Y.C., “Self-assembly of cetyl trimethylammonium bromide in ethanol-water mixtures”, Front. Chem. China, 4, 438-442 (2006). 19 Stone, V.F., Davis, R.J., “Synthesis, characterization, and photocatalytic activity of titania and niobia mesoporous molecular sieves”, Chem. Mater., 10, 1468-1474 (1998). 20 Soler-Illia, G.J. de A.A., Sanchez, C., Lebean, B., Patarin, J., “Chemical strategies to design textured materials:From microporous and mesoporous oxides to nanonetworks and hierarchical structures”, Chem. Rev., 102, 4093-4138 (2002). 21 Pavasupree, S., Jitputti, J., Namsinlapasathian, S., Yoshikawa, S., “Preparation and characterization of high surface area nanosheet titania with mesoporous structure”, Mater. Res. Bull., 43, 149-155 (2008). 22 Li, C.Z., Shi, L.Y., Xie, D.M., Du, H.L., “Morphology and crystal structure of A1-doped TiO2 nanoparticles synthesized by vapor phase oxidation of titanium tetrachloride”, J. Non-Cryst. Solids, 352, 4128-4135 (2006). 23 Yin, J.B., Zhao, X.P., “Enhanced electrorheological activity of mesoporous Cr-doped TiO2 from activated pore wall and high surface area”, J. Phys. Chem. B, 110, 12916-12925 (2006). 24 Blanchard, J., Schuth, F., Trens, P., Hudson, M., “Synthesis of hexagonally packed porous titanium oxo-phosphate”, Micropor. Mesopor. Mater., 39, 163-170 (2000). 25 Nagaveni, K., Hegde, M.S., Madras, G., “Structure and photocatalytic activity of Ti1-xMxO2(M = W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method”, J. Phys. Chem. B, 108, 20204-20212 (2004). 26 Barnard, A.S., Zapol, P., Curtiss, L.A., “Anatase and rutile surfaces with adsorbates representative of acidic and basic conditions”, Surf. Sci., 582, 173-188 (2005). 27 Tayade, R.J., Kulkarni, R.G., Jasra, R.V., “Transition metal ion impregnated mesoporous TiO2 for photocatalytic degradation of organic contaminants in water”, Ind. Eng. Chem. Res., 45, 5231-5238 (2006). 28 Tarafdar, A., Biswas, S., Pramanik, N.K., Pramanik, P., “Synthesis of mesoporous chromium phosphate through an unconventional sol-gel route”, Micropor. Mesopor. Mater., 89, 204-208 (2006). 29 Zhang, H.Z., Banfield, J.F., “Kinetics of crystallization and crystal growth of nanocrystalline anatase in nanometer-sized amorphous titania”, Chem. Mater., 14, 4145-4154 (2002). 30 Askeland, D.R., Phule, P.P., The Science and Engineering of Materials, 4th edition, Thomson Learning Asia Pte Ltd., Beijing (2004). 31 Yu, J.C., Zhang, L.Z., Zheng, Z., Zhao, J.C., “Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity”, Chem. Mater., 15, 2280-2286 (2003). 32 Oliver, P.M., Watson, G.W., Kelsey, E.T., Parker, S.C., “Atomistic simulation of the surface structure of the TiO2 polymorphs rutileand anatase”, J. Mater. Chem., 7, 563-568 (1997). |