1 Béguin, P., Aubert, J.P., “The biological degradation of cellulose”, FEMS Microbiology Reviews, 13, 25-58 (1994). 2 Lima, M.M.D., Borsali, R., “Rodlike cellulose microcrystals:Structure, properties, and applications”, Macromol. Rapid Commun., 25, 771-787 (2004). 3 Sjöholm, E., Gustafsson, K., Eriksson, B., Brown, W., Colmsjo, A., “Aggregation of cellulose in lithium chloride/N,N-dimethylacetamide”, Carbohydr. Polym., 41, 153-161 (2000). 4 Zhang, M.J., Su, R.X., Qi, W., He, Z.M., “Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes”, Appl. Biochem. Biotechnol., 160, 1407-1414 (2010). 5 Gusakov, A.V., Salanovich, T.N., Antonov, A.I., Ustinov, B.B., Okunev, O.N., Burlingame, R., Emalfarb, M., Baez, M., Sinitsyn, A.P., “Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose”, Biotechnol. Bioeng., 97, 1028-1038 (2007). 6 Eremeeva, T., “Size-exclusion chromatography of enzymatically treated cellulose and related polysaccharides:a review”, J. Biochem. Bioph. Methods, 56, 253-264 (2003). 7 Eremeeva, T., Bikova, T., Eisimonte, M., Viesturs, U., Treimanis, A., “Fractionation and molecular characteristics of cellulose during enzymatic hydrolysis”, Cellulose, 8, 69-79 (2001). 8 Chen, Y., Stipanovic, A.J., Winter, W.T., Wilson, D.B., Kim, Y.J., “Effect of digestion by pure cellulases on crystallinity and average chain length for bacterial and microcrystalline celluloses”, Cellulose, 14, 283-293 (2007). 9 Pala, H., Mota, M., Gama, F.M., “Enzymatic depolymerisation of cellulose”, Carbohydr. Polym., 68, 101-108 (2007). 10 KlemanLeyer, K.M., SiikaAho, M., Teeri, T.T., Kirk, T.K., “The cellulases endoglucanase I and cellobiohydrolase Ⅱ of Trichoderma reesei act synergistically to solubilize native cotton cellulose but not to decrease its molecular size”, Applied and Environmental Microbiology, 62, 2883-2887 (1996). 11 Srisodsuk, M., Kleman-Leyer, K., Keranen, S., Kirk, T.K., Teeri, T.T., “Modes of action on cotton and bacterial cellulose of a homologous endoglucanase-exoglucanase pair from Trichoderma reesei”, Eur. J. Biochem., 251, 885-892 (1998). 12 Gupta, R., Lee, Y.Y., “Mechanism of cellulase reaction on pure cellulosic substrates”, Biotechnol. Bioeng., 102, 1570-81 (2009). 13 Klemanleyer, K.M., Gilkes, N.R., Miller, R.C., Kirk, T.K., “Changes in the molecular-size distribution of insoluble celluloses by the action of recombinant cellulomonas-fimi cellulases”, Biochem. J, 302, 463-469 (1994). 14 Zhang, Y.H.P., Himmel, M.E., Mielenz, J.R., “Outlook for cellulase improvement:Screening and selection strategies”, Biotechnol. Adv., 24, 452-481 (2006). 15 Josefsson, P., Henriksson, G., Wagberg, L., “The physical action of cellulases revealed by a quartz crystal microbalance study using ultrathin cellulose films and pure”, Biomacromolecules, 9, 249-254 (2008). 16 Ottøy, M.H., Vårum, K.M., Christensen, B.E., Anthonsen, M.W., Smidsr d, O., “Preparative and analytical size-exclusion chromatography of chitosans”, Carbohydr. Polym., 31, 253-261 (1996z). 17 Wyatt, P.J., “Light scattering and the absolute characterization of macromolecules”, Anal. Chim. Acta, 272, 1-40 (1993). 18 Andersson, M., Wittgren, B., Wahlund, K.G., “Accuracy in multiangle light scattering measurements for molar mass and radius estimations. Model calculations and experiments”, Anal. Chem., 75, 4279-4291 (2003). 19 Schult, T., Hjerde, T., Inge Optun, O., Kleppe, P.J., Moe, S., “Characterization of cellulose by SEC-MALLS”, Cellulose, 9, 149-158 (2002). 20 Yanagisawa, M., Shibata, I., Isogai, A., “SEC-MALLS analysis of cellulose using LiCl/1,3-dimethyl-2-imidazolidinone as an eluent”, Cellulose, 11, 169-176 (2004). 21 Berggren, R., Berthold, F., Sjoholm, E., Lindstrom, M., “Improved methods for evaluating the molar mass distributions of cellulose in Kraft pulp”, J. Appl. Polym. Sci., 88, 1170-1179 (2003). 22 Yanagisawa, M., Isogai, A., “SEC-MALS-QELS study on the molecular conformation of cellulose in LiCl/amide solutions”, Biomacromolecules, 6, 1258-1265 (2005). 23 Wood, T.M., Bhat, K.M., “Methods for measuring cellulase activities”, Methods Enzymol., 160, 87-112 (1988). 24 Zhang, Y.H.P., Lynd, L.R., “Toward an aggregated understanding of enzymatic hydrolysis of cellulose:Noncomplexed cellulase systems”, Biotechnol. Bioeng., 88, 797-824 (2004). 25 Andersen, N., Johansen, K.S., Michelsen, M., Stenby, E.H., Krogh, K., Olsson, L., “Hydrolysis of cellulose using mono-component enzymes shows synergy during hydrolysis of phosphoric acid swollen cellulose (PASC), but competition on Avicel”, Enzyme Microb. Technol., 42, 362-370 (2008). 26 Mansfield, S.D., Meder, R., “Cellulose hydrolysis-the role of monocomponent cellulases in crystalline cellulose degradation”, Cellulose, 10, 159-169 (2003). 27 van Wyk, J.P.H., “Paper hydrolysis by cellulase from penicillium funiculosum and Trichoderma viride”, Bioresour. Technol., 63, 275-277 (1998). 28 Eriksson, T., Karlsson, J., Tjerneld, F., “A model explaining declining rate in hydrolysis of lignocellulose substrates with cellobiohydrolase I (Cel7A) and endoglucanase I (Cel7B) of Trichoderma reesei”, Appl. Biochem. Biotechnol., 101, 41-60 (2002). 29 Goh, K.K.T., Pinder, D.N., Hall, C.E., Hemar, Y., “Rheological and light scattering properties of flaxseed polysaccharide aqueous solutions”, Biomacromolecules, 7, 3098-3103 (2006). |