[1] C.A. T Eckert, Debenedetti P.G., Supercritical fluid as solvents for chemical and materials processing, Knutson, B. L. 383 (1996) 313-318. [2] M.A. McHugh, V.J. Krukonis, in: M.A. Stoneham (Ed.), “Supercritical Fluids Extraction”: Principles and Practice, Butterworth, Heinman, 1993. [3] Yu. Jinglin,Wang Shujun, Tian Yiling, Experimental determination and calculation of thermodynamic properties of CO2 + octane to high temperatures and high pressures, Fluid Phase Equilib. 246 (6-14) (2006). [4] P. Chattopadhyay, R.B. Gupta, Production of antibiotic nanoparticles using supercritical CO2 as antisolvent with enhanced mass transfer, Ind. Eng. Chem. Res. 40 (2001) 3530-3539. [5] C.G. Kalogiannis, P. Eleni, C.G. Panayiotou, Production of amoxicillin microparticles by supercritical antisolvent precipitation, Ind. Eng. Chem. Res. 44 (2005) 9339-9346. [6] I. Kikic,M. Lora, A. Bertucco, Thermodynamic analysis of three phase equilibria in binary and ternary systems for applications in rapid expansion of a supercritical solution (RESS), particles from gas saturated solutions (PGSS) and supercritical antisolvent crystallization (SAS), Ind. Eng. Chem. Res. 36 (1997) 5507-5515. [7] D.W. Matson, J.L. Fulton, R.C. Petersen, R.D. Smith, Rapid expansion of supercritical fluid solutions: solute formation of powders, thin film and fibers, Ind. Eng. Chem. Res. 26 (1987) 2298-2306. [8] D. Fu, Z. Yang, Y.Z. Wei, Progress in phase equilibria and interfacial tensions for supercritical carbon dioxide and alkanes binary mixtures, J. N. China Electr. Power Univ. 37 (4) (2010) 84-89. [9] J.C. Xu, S.Wang,W. Yu, Q.Q. Xu,W.B.Wang, J.Z. Yin, Molecular dynamics simulation for the binary mixtures of high pressure carbon dioxide and ionic liquids, Chin. J. Chem. Eng. 22 (2) (2014) 53-163. [10] D. Mohammad-Aghaie, M.M. Papari, A.R. Ebrahimi, Determination of transport properties of dilute binary mixtures containing carbon dioxide through isotropic pair potential energies, Chin. J. Chem. Eng. 22 (3) (2014) 274-286. [11] S.N. Joung, C.W. Yoo, H.Y. Shin, S.Y. Kim, K.P. Yoo, C.S. Lee,W.S. Huh, Measurements and correlation of high-pressure VLE of binary CO2-alcohol systems (methanol, ethanol, 2-methoxyethanol and 2-ethoxyethanol), Fluid Phase Equilib. 185 (1-2) (2001) 219-230. [12] Z. Yang, M. Li, B. Peng, M. Lin, Z. Dong, Dispersion property of CO2 in oil, Part 1: Volume sexpansion of CO2 + alkane at near critical and supercritical condition of CO2, J. Chem. Eng. Data 57 (2012) 882-889. [13] Z. Yang, M. Li, B. Peng, M. Lin, Z. Dong, Dispersion property of CO2 in oil Part 2: Volume expansion of CO2 + organic liquid at near critical and supercritical condition of CO2, J. Chem. Eng. Data 57 (2012) 1305-1311. [14] A.D. Leu, D.B. Robinson, Equilibrium phase properties of selected carbon dioxide binary systems: n-Pentane-carbon dioxide and isopentane-carbon dioxide, J. Chem. Eng. Data 32 (4) (1987) 447-450. [15] J.J.C. Hsu, N. Nagarajan, R.L. Robinson, Equilibrium phase compositions, phase densities, and interfacial tensions for carbon dioxide + hydrocarbon systems. 1. Carbon dioxide + n-butane, J. Chem. Eng. Data 30 (4) (1985) 485-491. [16] N. Nagarajan, R.L. Robinson, Equilibrium phase compositions, phase densities, and interfacial tensions for carbon dioxide + hydrocarbon systems. 2. Carbon dioxide + n-decane, J. Chem. Eng. Data 31 (2) (1986) 168-171. [17] N. Nagarajan, R.L. Robinson, Equilibrium phase compositions, phase densities, and interfacial tensions for carbon dioxide + hydrocarbon systems. 3. CO2 + cyclohexane. 4. CO2 + benzene, J. Chem. Eng. Data 32 (3) (1987) 369-371. [18] K.A.M. Gasem, K.B. Dickson, P.B. Dulcamara, N. Nagarajan, R.L. Robinson, Equilibriumphase compositions, phase densities, and interfacial tensions for carbon dioxide + hydrocarbon systems. 5. Carbon dioxide + n-tetradecane, J. Chem. Eng. Data 34 (2) (1989) 191-195. [19] N. Nagarajan, K.A.M. Gasem, R.L. Robinson, Equilibrium phase compositions, phase densities, and interfacial tensions for carbon dioxide + hydrocarbon systems. 6. Carbon dioxide + n-butane + n-decane, J. Chem. Eng. Data 35 (3) (1990) 228-231. [20] Y. Rotenberg, L. Boruvka, A.W. Neumann, Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces, J. Colloid Interface Sci. 93 (1) (1983) 169-183. [21] P. Cheng, D. Li, L. Boruvka, Y. Rotenberg, A.W. Neumann, Automation of axisymmetric drop shape analysis for measurements of interfacial tensions and contact angles, Colloids Surf. 43 (2) (1990) 151-167. [22] D.N. Rao, A new technique of vanishing interfacial tension formiscibility determination, Fluid Phase Equilib. 139 (1997) 311-324. [23] D.N. Rao, J.I. Lee, Determination of gas-oil miscibility conditions by interfacial tension measurements, J. Colloid Interface Sci. 262 (2) (2003) 474-482. [24] D.N. Rao, Fluid-fluid and solid-fluid interfacial interactions in petroleumreservoirs, J. Pet. Sci. Technol. 19 (1) (2001) 157-188. [25] D.Y. Yang, Y.A. Gu, “Visualization of interfacial interactions of crude oil-CO2 systems under reservoir conditions, presented at symposium on improved oil recovery”, 17-21 April, Tulsa, Oklahoma SPE 89366-MS, 2004. [26] Z. Yang, Dispersion Property of Supercritical CO2 in Organic Liquid(Ph.D. Thesis) China University of Petroleum (Beijing), China, 2012. [27] P.C. Hiemenz, R. Rajagopalan, Principles of Colloid and Surface Chemistry, Marcel Dekker, Inc, New York, 1997. |