[1] V. Massey, The chemical and biological versatility of riboflavin, Biochem. Soc. Trans. 28 (2000) 283-296.[2] S. Koizumi, Y. Yonetani, A. Maruyama, S. Teshiba, Production of riboflavin by metabolically engineered Corynebacterium ammoniagenes, Appl. Microbiol. Biotechnol. 53 (2000) 674-679.[3] A. Bacher, S. Eberhardt, M. Fischer, K. Kis, G. Richter, Biosynthesis of vitamin b2 (riboflavin), Annu. Rev. Nutr. 20 (2000) 153-167.[4] J.B. Perkins, A. Sloma, T. Hermann, K. Theriault, E. Zachgo, T. Erdenberger, N. Hannett, N.P. Chatterjee, V. Williams II, G.A. Rufo Jr., R. Hatch, J. Pero, Genetic engineering of Bacillus subtilis for the commercial production of riboflavin, J. Ind. Microbiol. Biotechnol. 22 (1999) 8-18.[5] M. Hümbelin, V. Griesser, T. Keller,W. Schurter, M. Haiker, H.P. Hohmann, H. Ritz, G. Richter, A. Bacher, A.P.G.M. van Loon, GTP cyclohydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase are rate-limiting enzymes in riboflavin synthesis of an industrial Bacillus subtilis strain used for riboflavin production, J. Ind. Microbiol. Biotechnol. 22 (1999) 1-7.[6] Y. Duan, T. Chen, X. Chen, J. Wang, X. Zhao, Enhanced riboflavin production by expressing heterologous riboflavin operon from B. cereus ATCC14579 in Bacillus subtilis, Chin. J. Chem. Eng. 18 (2010) 129-136.[7] K.V. Dmytruk, V.Y. Yatsyshyn, N.O. Sybirna, D.V. Fedorovych, A.A. Sibirny, Metabolic engineering and classic selection of the yeast Candida famata (Candida flareri) for construction of strains with enhanced riboflavin production, Metab. Eng. 13 (2011) 82-88.[8] S.B. Shi, Z. Shen, X. Chen, T. Chen, X.M. Zhao, Increased production of riboflavin by metabolic engineering of the purine pathway in Bacillus subtilis, Biochem. Eng. J. 46 (2009) 28-33.[9] S.B. Shi, T. Chen, Z. Zhang, X. Chen, X.M. Zhao, Transcriptome analysis guided metabolic engineering of Bacillus subtilis for riboflavin production, Metab. Eng. 11 (2009) 243-252.[10] Z.W.Wang, T. Chen, X.H. Ma, Z. Shen, X.M. Zhao, Enhancement of riboflavin production with Bacillus subtilis by expression and site-directedmutagenesis of zwf and gnd gene from Corynebacterium glutamicum, Bioresour. Technol. 102 (2011) 3934-3940.[11] G.L. Wang, L. Bai, Z.W. Wang, T. Shi, T. Chen, X.M. Zhao, Enhancement of riboflavin production by deregulating gluconeogenesis in Bacillus subtilis, World J. Microbiol. Biotechnol. (2014), http://dx.doi.org/10.1007/s11274-014-1611-6.[12] A. Jiménez, M.A. Santos, J.L. Revuelta, Phosphoribosyl pyrophosphate synthase activity affects growth and riboflavin production in Ashbya gossypii, BMC Biotechnol. 8 (2008) 67.[13] M. Shimaoka, Y. Takenaka, O. Kurahashi, H. Kawasaki, H. Matsui, Effect of amplification of desensitized purF and prs on inosine accumulation in Escherichia coli, J. Biosci. Bioeng. 103 (2007) 255-261.[14] K. He, Y. Ma, S. Du, X. Xie, Q. Xu, N. Chen, Effects of overexpression of key enzyme genes on guanosine accumulation in Bacillus amyloliquefaciens, Wei Sheng Wu Xue Bao 52 (2012) 718-725.[15] H. Matsui, H. Kawasaki, M. Shimaoka, O. Kurahashi, Investigation of various genotype characteristics for inosine accumulation in Escherichia coli W3110, Biosci. Biotechnol. Biochem. 65 (2001) 570-578.[16] T. Asahara, Y. Mori, N.P. Zakataeva, V.A. Livshits, K. Yoshida, K. Matsuno, Accumulation of gene-targeted Bacillus subtilis mutations that enhance fermentative inosine production, Appl. Microbiol. Biotechnol. 87 (2010) 2195-2207.[17] H. Li, G. Zhang, A. Deng, N. Chen, T. Wen, De novo engineering and metabolic flux analysis of inosine biosynthesis in Bacillus subtilis, Biotechnol. Lett. 33 (2011) 1575-1580.[18] N. Zamboni, N. Mouncey, H.-P. Hohmann, U. Sauer, Reducing maintenance metabolism by metabolic engineering of respiration improves riboflavin production by Bacillus subtilis, Metab. Eng. 5 (2003) 49-55.[19] A. Nanchen, A. Schicker, U. Sauer, Nonlinear dependency of intracellular fluxes on growth rate in miniaturized continuous cultures of Escherichia coli, Appl. Environ. Microbiol. 72 (2006) 1164-1172.[20] U. Sauer, V. Hatzimanikatis, H.P. Hohmann, M.Manneberg, A.P. van Loon, J.E. Bailey, Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis, Appl. Environ. Microbiol. 62 (1996) 3687-3696.[21] Z.Q. Lin, Z.B. Xu, Y.F. Li, Z.W. Wang, T. Chen, X.M. Zhao, Metabolic engineering of Escherichia coli for the production of riboflavin, Microb. Cell Factories 13 (2014) 104.[22] R.S. Goswami, Targeted gene replacement in fungi using a split-marker approach, Methods Mol. Biol. 835 (2012) 255-269.[23] L. Tan, H. Chen, S. Yu, X. Qiu, C. Song, D. Chen, S. Zhang, F. Zhang, S. He, X. Shen, M. Hu, C. Ding, A SOE-PCR method of introducing multiple mutations into Mycoplasma gallisepticum neuraminidase, J. Microbiol. Methods 94 (2013) 117-120.[24] T.E. Kuhlman, E.C. Cox, Site-specific chromosomal integration of large synthetic constructs, Nucleic Acids Res. 38 (2010), e92.[25] K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods 25 (2001) 402-408.[26] W.C. Barrette Jr., J.M. Albrich, J.K. Hurst, Hypochlorous acid-promoted loss of metabolic energy in Escherichia coli, Infect. Immun. 55 (1987) 2518-2525.[27] R.H. Müller, N. Loffhagen,W. Babel, Rapid extraction of (di)nucleotides from bacterial cells and determination by ion-pair reversed-phase HPLC, J. Microbiol. Methods 25 (1996) 29-35.[28] W.Wang, A. Gorrell, Z. Hou, R.B. Honzatko, H.J. Fromm, Ambiguities inmapping the active site of a conformationally dynamic enzyme by directed mutation. Role of dynamics in structure-function correlations in Escherichia coli adenylosuccinate synthetase, J. Biol. Chem. 273 (1998) 16000-16004.[29] A. Jiménez, M.A. Santos,M. Pompejus, J.L. Revuelta,Metabolic engineering of the purine pathway for riboflavin production in Ashbya gossypii, Appl. Environ.Microbiol. 71 (2005) 5743-5751. |