[1] S. Gu, B.J. Xu, Y.S. Yan, Electrochemical energy engineering: A new frontier of chemical engineering innovation, Annu. Rev. Chem. Biomol. Eng. 5 (2014) 429-454.[2] W. Juda, W.A.McRae, Coherent ion-exchange gels andmembranes, J. Am. Chem. Soc. 72 (1950) 1043-1044.[3] W.T. Grubb, Fuel cell, US Patent No. 2913511 (1959).[4] M.S. Wilson, S. Gottesfeld, Thin-film catalyst layers for polymer electrolyte fuel-cell electrodes, J. Appl. Electrochem. 22 (1992) 1-7.[5] R. Bashyam, P. Zelenay, A class of non-precious metal composite catalysts for fuel cells, Nature 443 (2006) 63-66.[6] G. Wu, K.L. More, C.M. Johnston, P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt, Science 332 (2011) 443-447.[7] X. Yuan, X.L. Ding, C.Y. Wang, Z.F. Ma, Use of polypyrrole in low temperature fuel cells, Energy Environ. Sci. 6 (4) (2013) 1105-1124.[8] E.W. Justi, A.W. Winsel, The DSK system of fuel cell electrodes, J. Electrochem. Soc. 108 (1961) 1073-1079.[9] E. Agel, J. Bouet, J.F. Fauvarque, Characterization and use of anionic membranes for alkaline fuel cells, J. Power Sources 101 (2001) 267-274.[10] J.R. Varcoe, R.C.T. Slade, Prospects for alkaline anion-exchange membranes in low temperature fuel cells, Fuel Cells 5 (2005) 187-200.[11] S.F. Lu, J. Pan, A.B. Huang, L. Zhuang, J.T. Lu, Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 20611-20614.[12] S. Gu,W.C. Sheng, R. Cai, S.M. Alia, S.Q. Song, Y.S. Yan, An efficient Ag-ionomer interface for hydroxide exchange membrane fuel cells, Chem. Commun. 49 (2013) 131-133.[13] M. Piana, M. Boccia, A. Filpi, E. Flammia, H.A. Miller, H2/air alkaline membrane fuel cell performance and durability, using novel ionomer and non-platinum group metal cathode catalyst, J. Power Sources 195 (2010) 5875-5881.[14] Z. Li, Z.Y. Jiang, H.M. Tian, S. Wang, B. Zhang, H. Wu, Preparing alkaline anion exchange membrane with enhanced hydroxide conductivity via blending imidazolium-functionalized and sulfonated poly(ether ether ketone), J. Power Sources 288 (2015) 384-392.[15] X. Yan, S. Gu, G. He, X. Wu, W. Zheng, X. Ruan, Quaternary phosphoniumfunctionalized poly(ether ether ketone) as highly conductive and alkali-stable hydroxide exchange membrane for fuel cells, J. Membr. Sci. 466 (2014) 220-228.[16] B.E. Conway, G. Jerkiewicz, Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the ‘volcano curve’ for cathodic H-2 evolution kinetics, Electrochim. Acta 45 (2000) 4075-4083.[17] W.C. Sheng, M. Myint, J.G. Chen, Y.S. Yan, Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces, Energy Environ. Sci. 6 (2013) 1509-1512.[18] F. Munoz, C. Hua, T. Kwong, L. Tran, T.Q. Nguyen, J.L. Haan, Palladium-copper electrocatalyst for the promotion of the electrochemical oxidation of polyalcohol fuels in the alkaline direct alcohol fuel cell, Appl. Catal. B Environ. 174-175 (2015) 323-328.[19] C.Z. Guo, W.L. Liao, C.G. Chen, Design of a non-precious metal electrocatalyst for alkaline electrolyte oxygen reduction by using soybean biomass as the nitrogen source of electrocatalytically active center structures, J. Power Sources 269 (2014) 841-847.[20] H.J. Zhang, H.L. Li, X.T. Li, S.Y. Zheng, B. Zhao, J.H. Yang, Highly active electrocatalyst for oxygen reduction reaction from pyrolyzing carbon-supported iron tetraethylenepentamine complex, Appl. Catal. B Environ. 160 (2014) 676-683.[21] C. Dominguez, F.J. Perez-Alonso, S.A. Al-Thabaiti, S.N. Basahel, A.Y. Obaid, A.O. Alyoubi, J.L.G. de la Fuente, S. Rojas, Effect of N and S co-doping of multiwalled carbon nanotubes for the oxygen reduction, Electrochim. Acta 157 (2015) 158-165.[22] S.J. Chao, Z.Y. Bai, Q. Cui, H.Y. Yan, K.Wang, L. Yang, Hollowed-out octahedral Co/Ncodoped carbon as a highly efficient non-precious metal catalyst for oxygen reduction reaction, Carbon 82 (2015) 77-86.[23] C.H. Wang, C.W. Yang, Y.C. Lin, S.T. Chang, S.L.Y. Chang, Cobalt-iron(II, III) oxide hybrid catalysis with enhanced catalytic activities for oxygen reduction in anion exchange membrane fuel cell, J. Power Sources 277 (2015) 147-154.[24] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phosphoolivines as positiveelectrode materials for rechargeable lithium batteries, J. Electrochem. Soc. 144 (4) (1997) 1188-1194.[25] X.Z. Liao, Z.F. Ma, Y.S. He, X.M. Zhang, L.Wang, Y. Jiang, Electrochemical behavior of LiFePO4/C cathode material for rechargeable lithium batteries, J. Electrochem. Soc. 152 (10) (2005) A1969-A1972.[26] K.D. Yang, F.X. Tan, F.Wang, Y.F. Long, Y.X.Wen, Response surface optimization for process parameters of LiFePO4/C preparation by carbothermal reduction technology, Chin. J. Chem. Eng. 20 (4) (2012) 793-802.[27] Y.J. Zhang, Y.F. Yang, X.Y. Wang, S.S. Li, Synthesis of sub-micrometer lithium iron phosphate particles for lithium ion battery by using supercritical hydrothermal method, Chin. J. Chem. Eng. 22 (2) (2014) 234-237.[28] Z.W. Xiao, G.R. Hu, K. Du, Z.D. Peng, A facile route for synthesis of LiFePO4/C cathode material with nano-sized primary particles, Chin. J. Chem. Eng. 22 (5) (2014) 590-595.[29] X.Z. Liao, Z.F. Ma, L. Wang, X.M. Zhang, Y. Jiang, Y.S. He, A new synthesis route for LiFePO4/C cathode materials for lithium ion batteries, Electrochem. Solid-State Lett. 7 (12) (2004) A522-A525.[30] D. Zhang, R. Cai, Y.K. Zhou, Z.P. Shao, X.Z. Liao, Z.F. Ma, Effect of milling method and time on the properties and electrochemical performance of LiFePO4/C composites prepared by ball milling and thermal treatment, Electrochim. Acta 55 (2010) 2653-2661.[31] X.M. Liu, P. Yan, Y.Y. Xie, H. Yang, X.D. Shen, Z.F. Ma, Synthesis of superior fast charging-discharging nano-LiFePO4/C from nano-FePO4 generated using a confined area impinging jet reactor approach, Chem. Commun. 49 (47) (2013) 5396-5398.[32] X.Z. Liao, Y.S. He, Z.F. Ma, X.M. Zhang, L.Wang, Effects of fluorine-substitution on the electrochemical behavior of LiFePO4/C cathode materials, J. Power Sources 174 (2) (2007) 720-725.[33] Y. Shi, S.L. Chou, J.Z. Wang, D. Wexler, H.J. Li, H.K. Liu, Y.P. Wu, Graphene wrapped LiFePO4/C composites as cathode materials for Li-ion batteries with enhanced rate capacity, J. Mater. Chem. 22 (32) (2012) 16465-16470.[34] X.Z. Liao, Z.F. Ma, Q. Gong, Y.S. He, L. Pei, L.J. Zeng, Low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte, Electrochem. Commun. 10 (2008) 691-694.[35] Z.F. Ma, X.Z. Yuan, D. Dan Li, X.Z. Liao, Structrual and electrochemical characterization of carbonaceous mesophase spherule anode material for rechargeable lithium batteries, Electrochem. Commun. 4 (2) (2002) 188-192.[36] Y.S. He, P.F. Gao, J. Chen, X.W. Yang, X.Z. Liao, J. Yang, Z.F. Ma, A novel bath lily-like graphene sheet-wrapped nano-Si composite as a high performance anode material for Li-ion batteries, RSC Adv. 1 (2011) 958-960.[37] G.W. Zhou, J.L.Wang, P.F. Gao, X.W. Yang, Y.S. He, X.Z. Liao, J. Chen, Z.F. Ma, A facile spray drying route for the 3D graphene-encapsulated Fe2O3 nanoparticles for lithium ion battery anodes, Ind. Eng. Chem. Res. 52 (3) (2013) 1197-1204.[38] T. Yuan, W.T. Li, W.M. Zhang, Y.S. He, C.M. Zhang, X.Z. Liao, Z.F. Ma, One-pot spraydried graphene sheets-encapsulated nano-Li4Ti5O12 microspheres for a hybrid batCap system, Ind. Eng. Chem. Res. 53 (27) (2014) 10849-10857.[39] R. Koo, Advanced Li-ion polymer battery cellmanufacturing plant in USA, 2012 DOE AMR Meeting, May 16-20, Washington DC, arravt001, 2012.[40] Y.K. Son, Significant cost improvement of Li-ion cells through non-NMP electrode coating, direct separator coating, and fast formation technologies, 2014 DOE AMR Meeting, June 17-20, Washington DC, ES133, 2014.[41] D.L. Wood, J.L. Li, C. Daniel, D. Mohanty, S. Nagpure, Overcoming processing cost barriers of high performance lithium-ion battery electrodes, 2014 DOE AMR Meeting, June 17-20, Washington DC, ES164, 2014.[42] D. Mohanty, J.L. Li, R. Born, L.C. Maxey, R.B. Dinwiddie, C. Daniel, D.L. Wood, Nondestructive evaluation of slot-die-coated lithium secondary battery electrodes by in-line laser caliper and IR thermography methods, Anal. Methods 6 (3) (2014) 674.[43] J. Arnold, G. Voelker, Utilization of UV or EB curing technology to significantly reduce costs and VOCs in the manufacture of lithium-ion battery electrode, 2014 DOE AMR Meeting, June 17-20, Washington DC, ES132, 2014.[44] C.J. Bae, C.K. Erdonmez, J.W. Halloran, Y.M. Chiang, Design of battery electrodes with dual-scale porosity to minimize tortuosity and maximize performance, Adv. Mater. 25 (2013) 1254-1258.[45] S.J. Dillon, K. Sun, Microstructural design considerations for Li-ion battery systems, Curr. Opin. Solid State Mater. Sci. 16 (2012) 153-162.[46] Y.S. Chen, K.H. Chang, C.C. Hu, T.T. Cheng, Performance comparisons and resistance modeling for multi-segment, electrode designs of power-oriented lithium-ion batteries, Electrochim. Acta 55 (2010) 6433-6439.[47] M. Majima, T. Tada, S. Ujiie, E. Yagasaki, S. Inazawa, K. Miyazaki, Design and characteristics of large-scale lithium ion battery, J. Power Sources 81-82 (1999) 877-881.[48] K.H. Kwon, C.B. Shin, T.H. Kang, C.S. Kim, A two-dimensional modeling of a lithiumpolymer battery, J. Power Sources 3 (2006) 151-157.[49] U.S. Kim, C.B. Shin, C.S. Kim, Modeling for the scale-up of a lithium-ion polymer battery, J. Power Sources 189 (2009) 841-846.[50] M. Wang, J.J. Li, X.M. He, H. Wu, C.R. Wan, The effect of local current density on electrode design for lithium-ion batteries, J. Power Sources 207 (2012) 127-133.[51] S. De, P.W.C. Northrop, V. Ramadesigan, V.R. Subramanian, Model-based simultaneous optimization of multiple design parameters for lithium-ion batteries for maximization of energy density, J. Power Sources 227 (2013) 161-170.[52] S.C. Chen, C.C. Wan, Y.Y. Wang, Thermal analysis of lithium-ion batteries, J. Power Sources 140 (2005) 111-124.[53] U.S. Kim, J. Yi, C.B. Shin, T. Han, S. Park, Modelling the thermal behaviour of a lithium-ion battery during charge, J. Power Sources 196 (2011) 5115-5121.[54] W. Wu, X.R. Xiao, X.S. Huang, The effect of battery design parameters on heat generation and utilization in a Li-ion cell, Electrochim. Acta 83 (2012) 227-240.[55] A. Samba, N. Omar, H. Gualous, Y. Firouz, P.V. Bossche, J.V. Mierlo, T.I. Boubekeur, Development of an advanced two-dimensional thermal model for large size lithium-ion pouch cells, Electrochim. Acta 117 (2014) 246-254.[56] P. Taheri, A. Mansouri, M. Yazdanpour, M. Bahrami, Theoretical analysis of potential and current distributions in planar electrodes of lithium-ion batteries, Electrochim. Acta 133 (2014) 197-208.[57] P.S. Attidekou, S. Lambert, M. Armstrong, J. Widmer, K. Scott, P.A. Christensen, A study of 40 A h lithium ion batteries at zero percent state of charge as a function of temperature, J. Power Sources 269 (2014) 694-703.[58] S. Jung, D. Kang, Multi-dimensional modeling of large-scale lithium-ion batteries, J. Power Sources 248 (2014) 498-509.[59] Y.J. He, J.N. Shen, J.F. Shen, Z.F. Ma, Embedding monotonicity in the construction of polynomial open-circuit voltage model for lithium-ion batteries: A semi-infinite programming formulation approach, Ind. Eng. Chem. Res. 54 (12) (2015) 3167-3174.[60] Y.J. He, J.N. Shen, J.F. Shen, Z.F. Ma, State of health estimation of lithium-ion batteries: A multiscale Gaussian process regression modeling approach, AIChE J. 61 (5) (2015) 1589-1600. |