[1] T. Werpy, G. Petersen, Top Value-added Chemicals From Biomass: Volume I - Results of Screening for Potential Candidates From Sugars and Synthesis Gas, Nat. Gas. (2004) https://www.osti.gov/biblio/15008859/ [2] A. Osatiashtiani, A.F. Lee, K. Wilson, Recent advances in the production of γ-valerolactone from biomass-derived feedstocks via heterogeneous catalytic transfer hydrogenation, J. Chem. Technol. Biot. 92 (6) (2017) 1125-1135 [3] C.-B. Chen, M.-Y. Chen, B. Zada, Y.-J. Ma, L. Yan, Q. Xu, W.-Z. Li, Q.-X. Guo, Y. Fu, Effective conversion of biomass-derived ethyl levulinate into γ-valerolactone over commercial zeolite supported Pt catalysts, RSC Adv. 6 (113) (2016) 112477-112485 [4] A. Corma, S. Iborra, A. Velty, Chemical routes for the transformation of biomass into chemicals, Chem. Rev. 107 (6) (2007) 2411-2502 [5] W.R.H. Wright, R. Palkovits, Development of heterogeneous catalysts for the conversion of levulinic acid to γ-valerolactone, ChemSusChem 5 (9) (2012) 1657-1667 [6] Z. Yang, Y.B. Huang, Q.X. Guo, Y. Fu, RANEY® Ni catalyzed transfer hydrogenation of levulinate esters to γ-valerolactone at room temperature, Chem. Commun. 49 (46) (2013) 5328-5330 [7] M. Sudhakar, M. Lakshmi Kantam, V. Swarna Jaya, R. Kishore, K.V. Ramanujachary, A. Venugopal, Hydroxyapatite as a novel support for Ru in the hydrogenation of levulinic acid to γ-valerolactone, Catal. Commun. 50 (2014) 101-104 [8] K. Jiang, D. Sheng, Z.H. Zhang, J. Fu, Z.Y. Hou, X.Y. Lu, Hydrogenation of levulinic acid to γ-valerolactone in dioxane over mixed MgO-Al2O3 supported Ni catalyst, Catal. Today 274 (2016) 55-59 [9] A.M. Hengne, C.V. Rode, Cu-ZrO2 nanocomposite catalyst for selective hydrogenation of levulinic acid and its ester to γ-valerolactone, Green Chem. 14 (4) (2012) 1064-1072 [10] Q. Xu, X. Li, T. Pan, C. Yu, J. Deng, Q. Guo, Y. Fu, Supported copper catalysts for highly efficient hydrogenation of biomass-derived levulinic acid and γ-valerolactone, Green Chem. 18 (5) (2016) 1287-1294 [11] G.B. Kasar, N.S. Date, P.N. Bhosale, C.V. Rode, Steering the ester and γ-valerolactone selectivities in levulinic acid hydrogenation, Energy Fuels 32 (6) (2018) 6887-6900 [12] M. Audemar, C. Ciotonea, K. De?Oliveira?Vigier, S. Royer, A. Ungureanu, B. Dragoi, E. Dumitriu, F. Jérôme, Selective hydrogenation of furfural to furfuryl alcohol in the presence of a recyclable cobalt/SBA-15 catalyst, ChemSusChem 8 (11) (2015) 1885-1891 [13] X. Long, P. Sun, Z. Li, R. Lang, C. Xia, F. Li, Magnetic Co/Al2O3 catalyst derived from hydrotalcite for hydrogenation of levulinic acid to γ-valerolactone, Chin. J. Catal. 36 (9) (2015) 1512-1518 [14] K. Yan, A.C. Chen, Selective hydrogenation of furfural and levulinic acid to biofuels on the ecofriendly Cu-Fe catalyst, Fuel 115 (2014) 101-108 [15] H.C. Zhou, J.L. Song, H.L. Fan, B.B. Zhang, Y.Y. Yang, J.Y. Hu, Q.G. Zhu, B.X. Han, Cobalt catalysts: very efficient for hydrogenation of biomass-derived ethyl levulinate to gamma-valerolactone under mild conditions, Green Chem. 16 (8) (2016) 3870-3875 [16] R.R. Gowda, E.-X. Chen, Recyclable earth-abundant metal nanoparticle catalysts for selective transfer hydrogenation of levulinic acid to produce γ-valerolactone, ChemSusChem 9 (2) (2016) 181-185 [17] K. Murugesan, A.S. Alshammari, M. Sohail, R.V. Jagadeesh, Levulinic acid derived reusable cobalt-nanoparticles-catalyzed sustainable synthesis of γ-valerolactone, ACS Sustain. Chem. Eng. 7 (17) (2019) 14756-14764 [18] Y. Cen, S. Zhu, J. Guo, J. Chai, W. Jiao, J. Wang, W. Fan, Supported cobalt catalysts for the selective hydrogenation of ethyl levulinate to various chemicals, RSC Adv. 8 (17) (2018) 9152-9160 [19] C. Michel, J. Zaffran, A.M. Ruppert, J. Matras-Michalska, M. Jadrzejczyk, J. Grams, P. Sautet, Role of water in metal catalyst performance for ketone hydrogenation: a joint experimental and theoretical study on levulinic acid conversion into gamma-valerolactone, Chem. Commun. 50 (83) (2014) 12450-12453 [20] J.J. Tan, J.L. Cui, T.S. Deng, G.Q. Ding, Y.L. Zhu, Y.W. Li, Water-promoted hydrogenation of levulinic acid to gamma-valerolactone on supported ruthenium catalyst, ChemCatChem 7 (3) (2015) 508-512 [21] P. Sun, G. Gao, Z. Zhao, C. Xia, F. Li, Stabilization of cobalt catalysts by embedment for efficient production of valeric biofuel, ACS Catal. 4 (11) (2014) 4136-4142 [22] R.M. Deshpande, V.V. Buwa, C.V. Rode, R.V. Chaudhari, P.L. Mills, Tailoring of activity and selectivity using bimetallic catalyst in hydrogenation of succinic acid, Catal. Commun. 3 (7) (2002) 269-274 [23] Y. Zhu, S. Zhang, Y. Ye, X. Zhang, L. Wang, W. Zhu, F. Cheng, F.(. Tao, Catalytic conversion of carbon dioxide to methane on ruthenium-cobalt bimetallic nanocatalysts and correlation between surface chemistry of catalysts under reaction conditions and catalytic performances, ACS Catal. 2 (11) (2012) 2403-2408 [24] D. Liu, W.N.E. Cheo, Y.W.Y. Lim, A. Borgna, R. Lau, Y. Yang, A comparative study on catalyst deactivation of nickel and cobalt incorporated MCM-41 catalysts modified by platinum in methane reforming with carbon dioxide, Catal. Today 154 (3-4) (2010) 229-236 [25] A. Tavasoli, A.N. Pour, M.G. Ahangari, Kinetics and product distribution studies on ruthenium-promoted cobalt/alumina Fischer-Tropsch synthesis catalyst, J. Nat. Gas. Chem. 19 (6) (2010) 653-659 [26] R. Phienluphon, L. Shi, J. Sun, W.Q. Niu, P. Lu, P.F. Zhu, T. Vitidsant, Y. Yonwyama, Q.Y. Chen, N. Tsubaki, Ruthenium promoted cobalt catalysts prepared by an autocombustion method directly used for Fischer-Tropsch synthesis without further reduction, Catal. Sci. Technol. 4 (9) (2014) 3099-3107 [27] C.J. Bertole, C.A. Mims, G. Kiss, Support and rhenium effects on the intrinsic site activity and methane selectivity of cobalt Fischer-Tropsch catalysts, J. Catal. 221 (1) (2004) 191-203 [28] I. Sádaba, M. López Granados, A. Riisager, E. Taarning, Deactivation of solid catalysts in liquid media: the case of leaching of active sites in biomass conversion reactions, Green Chem. 17 (8) (2015) 4133-4145 [29] C. Weidenthaler, Pitfalls in the characterization of nanoporous and nanosized materials, Nanoscale 3 (3) (2011) 792-810 [30] X. Wang, G. Lan, H. Liu, Y. Zhu, Y. Li, Effect of acidity and ruthenium species on catalytic performance of ruthenium catalysts for acetylene hydrochlorination, Catal. Sci. Technol. 8 (23) (2018) 6143-6149 [31] J. Shariati, A. Haghtalab, A. Mosayebi, Fischer-Tropsch synthesis using Co and Co-Ru bifunctional nanocatalyst supported on carbon nanotube prepared via chemical reduction method, J. Energy Chem. 28 (2019) 9-22 [32] Q. Cai, J. Li, Catalytic properties of the Ru promoted Co/SBA-15 catalysts for Fischer-Tropsch synthesis, Catal. Commun. 9 (10) (2008) 2003-2006 [33] D. Xu, W. Li, H. Duan, Q. Ge, H. Xu, Reaction performance and characterization of Co/Al2O3 Fischer-Tropsch catalysts promoted with Pt, Pd and Ru, Catal. Lett. 102 (3-4) (2005) 229-235 [34] Z. Luo, Z. Zheng, L. Li, Y.-T. Cui, C. Zhao, Bimetallic Ru-Ni catalyzed aqueous-phase guaiacol hydrogenolysis at low H2 pressures, ACS Catal. 7 (12) (2017) 8304-8313 [35] N.H. Chinh, H. Lee, J. Lee, J.H. Kwak, K. An, Mesoporous mixed CuCo oxides as robust catalysts for liquid-phase furfural hydrogenation, Appl. Catal. A-Gen. 571 (2019) 118-126 [36] Y. Liu, K. Zhou, M. Lu, L. Wang, Z. Wei, X. Li, Acidic/basic oxides-supported cobalt catalysts for one-pot synthesis of isophorone diamine from hydroamination of isophorone nitrile, Ind. Eng. Chem. Res. 54 (37) (2015) 9124-9132 [37] H. Wu, J. Geng, H. Ge, Z. Guo, Y. Wang, G. Zheng, Egg-derived mesoporous carbon microspheres as bifunctional oxygen evolution and oxygen reduction electrocatalysts, Adv. Energy Mater. 6 (20) (2016) 1600794 [38] J.Y. Shen, A. Adnot, S. Kaliaguine, An ESCA study of the interaction of oxygen with the surface of ruthenium, Appl. Surf. Sci. 51 (1-2) (1991) 47-60 [39] B. Folkesson, M. Bjorøy, J. Pappas, S. Skaarup, R. Aaltonen, C. Swahn, ESCA studies on the charge distribution in some dinitrogen complexes of Rhenium, Iridium, Ruthenium, and Osmium, Acta Chem. Scand. 27 (1973) 287-302 [40] J.C. Fuggle, T.E. Madey, M. Steinkilberg, D. Menzel, Photoelectron spectroscopic studies of adsorption of CO and oxygen on Ru(001), Surf. Sci. 52 (3) (1975) 521-541 [41] D.J. Morgan, Resolving ruthenium: XPS studies of common ruthenium materials, Surf. Interface Anal. 47 (2015) 1072-1079 [42] I. Sádaba, M.L. Granados, A. Riisager, E. Tarrning, Deactivation of solid catalysts in liquid media: the case of leaching of active sites in biomass conversion reactions, Green Chem. 17 (8) (2015) 4133-4145 |