[1] A. Abdalazeez, T.L. Li, W.J. Wang, S. Abuelgasim, A brief review of CO2 utilization for alkali carbonate gasification and biomass/coal co-gasification: Reactivity, products and process, J. CO 43 (2021) 101370 [2] Y.C. Wei, W.J. Cai, S.J. Deng, Z.C. Li, H. Yu, S.Y. Zhang, Z.H. Yu, L. Cui, F.Z. Qu, Efficient syngas production via dry reforming of renewable ethanol over Ni/KIT-6 nanocatalysts, Renew. Energy 145 (2020) 1507-1516 [3] L.J. Wang, C.L. Weller, D.D. Jones, M.A. Hanna, Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production, Biomass Bioenergy 32 (7) (2008) 573-581 [4] K. Cheng, L. Zhang, J.C. Kang, X.B. Peng, Q.H. Zhang, Y. Wang, Selective transformation of syngas into gasoline-range hydrocarbons over mesoporous H-ZSM-5-supported cobalt nanoparticles, Chemistry 21 (5) (2015) 1928-1937 [5] R.G.D. Santos, A.C. Alencar, Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by fischer tropsch synthesis: A review, Int. J. Hydrog. Energy 45 (36) (2020) 18114-18132 [6] R.Y. Chein, W.H. Hsu, Thermodynamic analysis of syngas production via chemical looping dry reforming of methane, Energy 180 (2019) 535-547 [7] D.J. Wilhelm, D.R. Simbeck, A.D. Karp, R.L. Dickenson, Syngas production for gas-to-liquids applications: Technologies, issues and outlook, Fuel Process. Technol. 71 (1-3) (2001) 139-148 [8] Z. Ming, Y. Cui, J.C. Sun, Q.W. Zhang, Modified iron catalyst for direct synthesis of light olefin from syngas, Catal. Today 316 (2018) 142-148 [9] W.J. Wang, Y.Q. Wang, Steam reforming of ethanol to hydrogen over nickel metal catalysts, Int. J. Energy Res. 34 (14) (2010) 1285-1290 [10] M. Cobo, D. Pieruccini, R. Abello, L. Ariza, L.F. Córdoba, J.A. Conesa, Steam reforming of ethanol over bimetallic RhPt/La2O3: Long-term stability under favorable reaction conditions, Int. J. Hydrog. Energy 38 (14) (2013) 5580-5593 [11] W.J. Wang, Y.Q. Wang, Thermodynamic analysis of hydrogen production via partial oxidation of ethanol, Int. J. Hydrog. Energy 33 (19) (2008) 5035-5044 [12] Z.W. Xue, Y.S. Shen, P.W. Li, Y.C. Pan, J.J. Li, Z.L. Feng, Y. Zhang, Y.W. Zeng, Y.L. Liu, S.M. Zhu, Promoting effects of lanthanum oxide on the NiO/CeO2 catalyst for hydrogen production by autothermal reforming of ethanol, Catal. Commun. 108 (2018) 12-16 [13] M.B. Bahari, N.H.H. Phuc, B. Abdullah, F. Alenazey, D.V.N. Vo, Ethanol dry reforming for syngas production over Ce-promoted Ni/Al2O3 catalyst, J. Environ. Chem. Eng. 4 (4) (2016) 4830-4838 [14] J. Adanez, A. Abad, F. Garcia-Labiano, P. Gayan, L.F. de Diego, Progress in chemical-looping combustion and reforming technologies, Prog. Energy Combust. Sci. 38 (2) (2012) 215-282 [15] M. Rydén, A. Lyngfelt, T. Mattisson, Chemical-looping combustion and chemical-looping reforming in a circulating fluidized-bed reactor using Ni-based oxygen carriers, Energy Fuels 22 (4) (2008) 2585-2597 [16] M. Rydén, A. Lyngfelt, T. Mattisson, Synthesis gas generation by chemical-looping reforming in a continuously operating laboratory reactor, Fuel 85 (12-13) (2006) 1631-1641 [17] T. Pröll, J. Bolhàr-Nordenkampf, P. Kolbitsch, H. Hofbauer, Syngas and a separate nitrogen/argon stream via chemical looping reforming—A 140 kW pilot plant study, Fuel 89 (6) (2010) 1249-1256 [18] L.F. de Diego, M. Ortiz, J. Adánez, F. García-Labiano, A. Abad, P. Gayán, Synthesis gas generation by chemical-looping reforming in a batch fluidized bed reactor using Ni-based oxygen carriers, Chem. Eng. J. 144 (2) (2008) 289-298 [19] F. He, Y.G. Wei, H.B. Li, H. Wang, Synthesis gas generation by chemical-looping reforming using Ce-based oxygen carriers modified with Fe, Cu, and Mn oxides, 23 (4) (2009) 2095-2102 [20] S. Wang, B.W. Li, Y.X. Tang, Y.R. He, Thermodynamic assessment of membrane-assisted chemical looping reforming of glycerol, Chem. Eng. Process. Process. Intensif. 142 (2019) 107564 [21] J. Chen, K. Zhao, Z.L. Zhao, F. He, Z. Huang, G.Q. Wei, Identifying the roles of MFe2O4 (M=Cu, Ba, Ni, and Co) in the chemical looping reforming of char, pyrolysis gas and tar resulting from biomass pyrolysis, Int. J. Hydrog. Energy 44 (10) (2019) 4674-4687 [22] T. Nimmas, S. Wongsakulphasatch, C. Kui Cheng, S. Assabumrungrat, Bi-metallic CuO-NiO based multifunctional material for hydrogen production from sorption-enhanced chemical looping autothermal reforming of ethanol, Chem. Eng. J. 398 (2020) 125543 [23] S. Isarapakdeetham, P. Kim-Lohsoontorn, S. Wongsakulphasatch, W. Kiatkittipong, N. Laosiripojana, J.L. Gong, S. Assabumrungrat, Hydrogen production via chemical looping steam reforming of ethanol by Ni-based oxygen carriers supported on CeO2 and La2O3 promoted Al2O3, Int. J. Hydrog. Energy 45 (3) (2020) 1477-1491 [24] E. García-Díez, F. García-Labiano, L.F. de Diego, A. Abad, P. Gayán, J. Adánez, J.A.C. Ruíz, Optimization of hydrogen production with CO2 capture by autothermal chemical-looping reforming using different bioethanol purities, Appl. Energy 169 (2016) 491-498 [25] G.R. Kale, B.D. Kulkarni, K.V. Bharadwaj, Chemical looping reforming of ethanol for syngas generation: a theoretical investigation, Int. J. Energy Res. 37 (6) (2013) 645-656 [26] A. López Ortiz, M. Meléndez Zaragoza, V. Collins-Martínez, Thermodynamic analysis of the ethanol chemical looping autothermal reforming with CO2 capture, Int. J. Hydrog. Energy 40 (48) (2015) 17180-17191 [27] W.J. Wang, Thermodynamic and experimental aspects on chemical looping reforming of ethanol for hydrogen production using a Cu-based oxygen carrier, Int. J. Energy Res. 38 (9) (2014) 1192-1200 [28] W. Qin, J.Y. Wang, L.X. Luo, L. Liu, X.B. Xiao, Z.M. Zheng, S. Sun, X.Y. Hu, C.Q. Dong, Chemical looping reforming of ethanol-containing organic wastewater for high ratio H2/CO syngas with iron-based oxygen carrier, Int. J. Hydrog. Energy 43 (29) (2018) 12985-12998 [29] Z.L. Yu, Y.Y. Yang, S. Yang, Q. Zhang, J.T. Zhao, Y.T. Fang, X.G. Hao, G.Q. Guan, Iron-based oxygen carriers in chemical looping conversions: a review, Carbon Resour. Convers. 2 (1) (2019) 23-34 [30] H.S. Chen, Z. Zheng, Z.W. Chen, X.T. Bi, Reduction of hematite (Fe2O3) to metallic iron (Fe) by CO in a micro fluidized bed reaction analyzer: A multistep kinetics study, Powder Technol. 316 (2017) 410-420 [31] S. Abuelgasim, W.J. Wang, A. Abdalazeez, A brief review for chemical looping combustion as a promising CO2 capture technology: Fundamentals and progress, Sci Total Environ 764 (2021) 142892 [32] C.Q. Lu, K.Z. Li, X. Zhu, Y.G. Wei, L. Li, M. Zheng, B.B. Fan, F. He, H. Wang, Improved activity of magnetite oxygen carrier for chemical looping steam reforming by ultrasonic treatment, Appl. Energy 261 (2020) 114437 [33] C.Q. Lu, K.Z. Li, H. Wang, X. Zhu, Y.G. Wei, M. Zheng, C.H. Zeng, Chemical looping reforming of methane using magnetite as oxygen carrier: Structure evolution and reduction kinetics, Appl. Energy 211 (2018) 1-14 [34] V. Shah, Z. Cheng, D.S. Baser, J.A. Fan, L.S. Fan, Highly selective production of syngas from chemical looping reforming of methane with CO2 utilization on MgO-supported calcium ferrite redox materials, Appl. Energy 282 (2021) 116111 [35] T.T. Xu, B. Xiao, G. Gladson Moyo, F.H. Li, Z.H. Chen, X. Wang, Z.Q. Hu, S.M. Liu, M. Hu, Syngas production via chemical looping reforming biomass pyrolysis oil using NiO/dolomite as oxygen carrier, catalyst or sorbent, Energy Convers. Manag. 198 (2019) 111835 [36] S.G. Nadgouda, M.Q. Guo, A. Tong, L.S. Fan, High purity syngas and hydrogen coproduction using copper-iron oxygen carriers in chemical looping reforming process, Appl. Energy 235 (2019) 1415-1426 [37] V.V. Galvita, H. Poelman, V. Bliznuk, C. Detavernier, G.B. Marin, CeO2-modified Fe2O3 for CO2 utilization via chemical looping, Ind. Eng. Chem. Res. 52 (25) (2013) 8416-8426 [38] W. Wang, Y. Cao, Y. Wang, Natural gas fuelled chemical looping reforming with carbon dioxide capture technology for hydrogen generation: Thermodynamic investigation, J. Energy Inst. 84 (2) (2011) 94-101 [39] W.J. Wang, Hydrogen production via sorption enhanced chemical looping reforming of glycerol using Ni-based oxygen carrier and Ca-based sorbent: Theoretical and experimental study, Korean J. Chem. Eng. 31 (2) (2014) 230-239 [40] J. Liu, W.L. Shen, D.M. Cui, J. Yu, F.B. Su, G.W. Xu, Syngas methanation for substitute natural gas over Ni-Mg/Al2O3 catalyst in fixed and fluidized bed reactors, Catal. Commun. 38 (2013) 35-39 [41] T. Mattisson, M. Johansson, A. Lyngfelt, The use of NiO as an oxygen carrier in chemical-looping combustion, Fuel 85 (5-6) (2006) 736-747 [42] B.M. Corbella, L. De Diego, F. García, J. Adánez, J.M. Palacios, The performance in a fixed bed reactor of copper-based oxides on titania as oxygen carriers for chemical looping combustion of methane, Energy Fuels 19 (2) (2005) 433-441 [43] S.Y. Hosseini, M.R. Khosravi-Nikou, A. Shariati, Production of hydrogen and syngas using chemical looping technology via cerium-iron mixed oxides, Chem. Eng. Process. - Process. Intensif. 139 (2019) 23-33 [44] X. Zhu, Y.G. Wei, H. Wang, K.Z. Li, Ce-Fe oxygen carriers for chemical-looping steam methane reforming, Int. J. Hydrog. Energy 38 (11) (2013) 4492-4501 [45] B.L. Hou, H.Y. Zhang, H.Z. Li, Q.S. Zhu, Study on kinetics of iron oxide reduction by hydrogen, Chin. J. Chem. Eng. 20 (1) (2012) 10-17 [46] J.L. Pinilla, R. Utrilla, R.K. Karn, I. Suelves, M.J. Lázaro, R. Moliner, A.B. García, J.N. Rouzaud, High temperature iron-based catalysts for hydrogen and nanostructured carbon production by methane decomposition, Int. J. Hydrog. Energy 36 (13) (2011) 7832-7843 [47] E.R. Monazam, R.W. Breault, R. Siriwardane, Reduction of hematite (Fe2O3) to wüstite (FeO) by carbon monoxide (CO) for chemical looping combustion, Chem. Eng. J. 242 (2014) 204-210 [48] M. Kawanari, A. Matsumoto, R. Ashida, K. Miura, Enhancement of reduction rate of iron ore by utilizing iron ore/carbon composite consisting of fine iron ore particles and highly thermoplastic carbon material, ISIJ Int. 51 (8) (2011) 1227-1233 [49] W.R. Kang, K.B. Lee, Effect of operating parameters on methanation reaction for the production of synthetic natural gas, Korean J. Chem. Eng. 30 (7) (2013) 1386-1394 [50] Experimental and theoretical study of the interactions between Fe2O3/Al2O3 and CO, Energies 10 (5) (2017) 598. [51] Y. De Vos, M. Jacobs, P. van der Voort, I. van Driessche, F. Snijkers, A. Verberckmoes, Sustainable iron-based oxygen carriers for Chemical Looping for Hydrogen Generation, Int. J. Hydrog. Energy 44 (3) (2019) 1374-1391 [52] M. Zhu, S.Y. Chen, S.W. Ma, W.G. Xiang, Carbon formation on iron-based oxygen carriers during CH4 reduction period in Chemical Looping Hydrogen Generation process, Chem. Eng. J. 325 (2017) 322-331 [53] J. Hu, S.Y. Chen, W.G. Xiang, Sintering and agglomeration of Fe2O3-MgAl2O4 oxygen carriers with different Fe2O3 loadings in chemical looping processes, Fuel 265 (2020) 116983 [54] J.H. Bao, L.Y. Chen, F. Liu, Z. Fan, H.S. Nikolic, K.L. Liu, Evaluating the effect of inert supports and alkali sodium on the performance of red mud oxygen carrier in chemical looping combustion, Ind. Eng. Chem. Res. 55 (29) (2016) 8046-8057 |