[1] Y.F. Bing, Y. Zeng, C. Liu, L. Qiao, Y.M. Sui, B. Zou, W.T. Zheng, G.T. Zou, Assembly of hierarchical ZnSnO3 hollow microspheres from ultra-thin nanorods and the enhanced ethanol-sensing performances, Sensor Actuat. B:Chem. 190 (2014) 370-377 [2] W.L. Shi, F. Guo, M.Y. Li, Y. Shi, M.F. Wu, Y.B. Tang, Enhanced visible-light-driven photocatalytic H2 evolution on the novel nitrogen-doped carbon dots/CuBi2O4 microrods composite, J. Alloy. Compd. 775 (2019) 511-517 [3] W. Yang, D.Z. Chen, H.Y. Quan, S.L. Wu, X.B. Luo, L. Guo, Enhanced photocatalytic properties of ZnFe2O4-doped ZnIn2S4 heterostructure under visible light irradiation, RSC Adv. 6 (86) (2016) 83012-83019 [4] W.L. Shi, M.Y. Li, X.L. Huang, H.J. Ren, C. Yan, F. Guo, Facile synthesis of 2D/2D Co3(PO4)2/g-C3N4 heterojunction for highly photocatalytic overall water splitting under visible light, Chem. Eng. J. 382 (2020) 122960 [5] F. Guo, L.J. Wang, H.R. Sun, M.Y. Li, W.L. Shi, High-efficiency photocatalytic water splitting by a N-doped porous g-C3N4 nanosheet polymer photocatalyst derived from urea and N,N-dimethylformamide, Inorg. Chem. Front. 7 (8) (2020) 1770-1779 [6] F. Guo, L.J. Wang, H.R. Sun, M.Y. Li, W.L. Shi, X. Lin, A one-pot sealed ammonia self-etching strategy to synthesis of N-defective g-C3N4 for enhanced visible-light photocatalytic hydrogen, Int. J. Hydrog. Energy 45 (55) (2020) 30521-30532 [7] Y.Z. Hong, Y.H. Jiang, C.S. Li, W.Q. Fan, X. Yan, M. Yan, W.D. Shi, In-situ synthesis of direct solid-state Z-scheme V2O5/g-C3N4 heterojunctions with enhanced visible light efficiency in photocatalytic degradation of pollutants, Appl. Catal. B:Environ. 180 (2016) 663-673 [8] K. Wang, G.K. Zhang, J. Li, Y. Li, X.Y. Wu, 0D/2D Z-scheme heterojunctions of bismuth tantalate quantum dots/ultrathin g-C3N4 nanosheets for highly efficient visible light photocatalytic degradation of antibiotics, ACS Appl Mater Interfaces 9 (50) (2017) 43704-43715 [9] W.L. Shi, F. Guo, M.Y. Li, Y. Shi, Y.B. Tang, N-doped carbon dots/CdS hybrid photocatalyst that responds to visible/near-infrared light irradiation for enhanced photocatalytic hydrogen production, Sep. Purif. Technol. 212 (2019) 142-149 [10] K. Ma, O. Yehezkeli, D.W. Domaille, H.H. Funke, J.N. Cha, Enhanced hydrogen production from DNA-assembled Z-scheme TiO2-CdS photocatalyst systems, Angew Chem Int Ed Engl 54 (39) (2015) 11490-11494 [11] N.M. Das, D. Roy, P.S. Gupta, Diffusion mediated agglomeration of CdS nanoparticles via Langmuir-Blodgett technique, Mater. Res. Bull. 48 (10) (2013) 4223-4229 [12] Y. Jin, D.L. Jiang, D. Li, M. Chen, Construction of ultrafine TiO2 nanoparticle and SnNb2O6 nanosheet 0D/2D heterojunctions with abundant interfaces and significantly improved photocatalytic activity, Catal. Sci. Technol. 7 (11) (2017) 2308-2317 [13] F. Guo, X.L. Huang, Z.H. Chen, H.R. Sun, L.Z. Chen, Prominent co-catalytic effect of CoP nanoparticles anchored on high-crystalline g-C3N4 nanosheets for enhanced visible-light photocatalytic degradation of tetracycline in wastewater, Chem. Eng. J. 395 (2020) 125118 [14] F. Guo, X.L. Huang, Z.H. Chen, L.W. Cao, X.F. Cheng, L.Z. Chen, W.L. Shi, Construction of Cu3P-ZnSnO3-g-C3N4 p-n-n heterojunction with multiple built-in electric fields for effectively boosting visible-light photocatalytic degradation of broad-spectrum antibiotics, Sep. Purif. Technol. 265 (2021) 118477 [15] Q.G. Hao, Z. Mo, Z.G. Chen, X.J. She, Y.G. Xu, Y.H. Song, H.Y. Ji, X.Y. Wu, S.Q. Yuan, H. Xu, H.M. Li, 0D/2D Fe2O3 quantum dots/g-C3N4 for enhanced visible-light-driven photocatalysis, Colloids Surfaces A:Physicochem. Eng. Aspects 541 (2018) 188-194 [16] W.L. Shi, J.B. Wang, S. Yang, X. Lin, F. Guo, J.Y. Shi, Fabrication of a ternary carbon dots/CoO/g-C 3 N4 nanocomposite photocatalyst with enhanced visible-light-driven photocatalytic hydrogen production, J. Chem. Technol. Biotechnol. 95 (8) (2020) 2129-2138 [17] J.J. Pan, F. Guo, H.R. Sun, M.Y. Li, X.F. Zhu, L.L. Gao, W.L. Shi, Nanodiamond decorated 2D hexagonal Fe2O3 nanosheets with a Z-scheme photogenerated electron transfer path for enhanced photocatalytic activity, J. Mater. Sci. 56 (11) (2021) 6663-6675 [18] J. Zhang, Y. Guo, Y.H. Xiong, D.D. Zhou, S.S. Dong, Environment-friendly 0D/2D Ag/CDots/BiOCl heterojunction with enhanced photocatalytic tetracycline degradation and mechanism insight, J. Photochem. Photobiol. A:Chem. 356 (2018) 411-417 [19] M.Y. Ye, Z.H. Zhao, Z.F. Hu, L.Q. Liu, H.M. Ji, Z.R. Shen, T.Y. Ma, 0D/2D heterojunctions of vanadate quantum dots/graphitic carbon nitride nanosheets for enhanced visible-light-driven photocatalysis, Angew Chem Int Ed Engl 56 (29) (2017) 8407-8411 [20] L. Li, X.J. She, J.J. Yi, L. Pan, K.X. Xia, W. Wei, X.W. Zhu, Z.G. Chen, H. Xu, H.M. Li, Integrating CoOx cocatalyst on hexagonal α-Fe2O3 for effective photocatalytic oxygen evolution, Appl. Surf. Sci. 469 (2019) 933-940 [21] S.C. Han, L.F. Hu, Z.Q. Liang, S. Wageh, A.A. Al-Ghamdi, Y.S. Chen, X.S. Fang, One-step hydrothermal synthesis of 2D hexagonal nanoplates of α-Fe2O3/graphene composites with enhanced photocatalytic activity, Adv. Funct. Mater. 24 (36) (2014) 5719-5727 [22] S.W. Zhang, W.Q. Xu, M.Y. Zeng, J.X. Li, J.Z. Xu, X.K. Wang, Hierarchically grown CdS/α-Fe2O3 heterojunction nanocomposites with enhanced visible-light-driven photocatalytic performance, Dalton Trans 42 (37) (2013) 13417-13424 [23] J.F. Wu, Z. Li, F. Li, Synthesis and visible-light-driven photocatalytic activity of one-dimensional CdS/α-Fe2O3, Superlattices Microstruct. 54 (2013) 146-154 [24] J.N. Heo, J. Shin, J.Y. Do, R. Kim, M. Kang, Reliable carbon dioxide photoreduction by a rational electron transfer cycle formed on a nanorod-shaped CdS/Fe2O3 heterojunction catalyst, Appl. Surf. Sci. 495 (2019) 143567 [25] X. Jia, M. Tahir, L. Pan, Z.F. Huang, X.W. Zhang, L. Wang, J.J. Zou, Direct Z-scheme composite of CdS and oxygen-defected CdWO4:An efficient visible-light-driven photocatalyst for hydrogen evolution, Appl. Catal. B:Environ. 198 (2016) 154-161 [26] R.C. Shen, L.P. Zhang, X.Z. Chen, M. Jaroniec, N. Li, X. Li, Integrating 2D/2D CdS/α-Fe2O3 ultrathin bilayer Z-scheme heterojunction with metallic β-NiS nanosheet-based ohmic-junction for efficient photocatalytic H2 evolution, Appl. Catal. B:Environ. 266 (2020) 118619 [27] T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci. 254 (8) (2008) 2441-2449 [28] H. Kong, J. Song, J. Jang, One-step fabrication of magnetic gamma-Fe2O3/polyrhodanine nanoparticles using in situ chemical oxidation polymerization and their antibacterial properties, Chem Commun (Camb) 46 (36) (2010) 6735-6737 [29] Z.F. Jiang, W.M. Wan, H.M. Li, S.Q. Yuan, H.J. Zhao, P.K. Wong, A hierarchical Z-scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction, Adv Mater 30 (10) (2018):1706108. [30] M. Ding, N.N. Yao, C.G. Wang, J.Z. Huang, M.H. Shao, S.W. Zhang, P. Li, X.L. Deng, X.J. Xu, ZnO@CdS core-shell heterostructures:Fabrication, enhanced photocatalytic, and photoelectrochemical performance, Nanoscale Res Lett 11 (1) (2016) 205 [31] H. Sezen, A.A. Rockett, S. Suzer, XPS investigation of a CdS-based photoresistor under working conditions:Operando-XPS, Anal. Chem. 84 (6) (2012) 2990-2994 [32] J.Y. Shi, H.N. Cui, Z.X. Liang, X.H. Lu, Y.X. Tong, C.Y. Su, H. Liu, The roles of defect states in photoelectric and photocatalytic processes for ZnxCd1-xS, Energy Environ. Sci. 4 (2) (2011) 466-470 [33] G. Liu, P. Niu, L.C. Yin, H.M. Cheng, Α-Sulfur crystals as a visible-light-active photocatalyst, J. Am. Chem. Soc. 134 (22) (2012) 9070-9073 [34] W.L. Shi, K.K. Shu, H.R. Sun, H.J. Ren, M.Y. Li, F.Y. Chen, F. Guo, Dual enhancement of capturing photogenerated electrons by loading CoP nanoparticles on N-deficient graphitic carbon nitride for efficient photocatalytic degradation of tetracycline under visible light, Sep. Purif. Technol. 246 (2020) 116930 [35] S. Yang, C. Liu, J.B. Wang, X. Lin, Y.Z. Hong, F. Guo, J.Y. Shi, Enhanced photocatalytic activity of g-C3N4 quantum dots/Bi3.64Mo0.36O6.55 nanospheres composites, J. Solid State Chem. 287 (2020) 121347 [36] Q. Zhu, Y.K. Sun, F.S. Na, J. Wei, S. Xu, Y.L. Li, F. Guo, Fabrication of CdS/titanium-oxo-cluster nanocomposites based on a Ti32 framework with enhanced photocatalytic activity for tetracycline hydrochloride degradation under visible light, Appl. Catal. B:Environ. 254 (2019) 541-550 [37] C.Y. Lu, F. Guo, Q.Z. Yan, Z.J. Zhang, D. Li, L.P. Wang, Y.H. Zhou, Hydrothermal synthesis of type II ZnIn2S4/BiPO4 heterojunction photocatalyst with dandelion-like microflower structure for enhanced photocatalytic degradation of tetracycline under simulated solar light, J. Alloy. Compd. 811 (2019) 151976 [38] X.F. Zhu, F. Guo, J.J. Pan, H.R. Sun, L.L. Gao, J.X. Deng, X.Y. Zhu, W.L. Shi, Fabrication of visible-light-response face-contact ZnSnO3@g-C3N4 core-shell heterojunction for highly efficient photocatalytic degradation of tetracycline contaminant and mechanism insight, J. Mater. Sci. 56 (6) (2021) 4366-4379 [39] Y.G. Tan, Z. Shu, J. Zhou, T.T. Li, W.B. Wang, Z.L. Zhao, One-step synthesis of nanostructured g-C3N4/TiO2 composite for highly enhanced visible-light photocatalytic H2 evolution, Appl. Catal. B:Environ. 230 (2018) 260-268 [40] H.R. Sun, F. Guo, J.J. Pan, W. Huang, K. Wang, W.L. Shi, One-pot thermal polymerization route to prepare N-deficient modified g-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process, Chem. Eng. J. 406 (2021) 126844 [41] W.L. Shi, M.Y. Li, X.L. Huang, H.J. Ren, F. Guo, Y.B. Tang, C.Y. Lu, Construction of CuBi2O4/Bi2MoO6 p-n heterojunction with nanosheets-on-microrods structure for improved photocatalytic activity towards broad-spectrum antibiotics degradation, Chem. Eng. J. 394 (2020) 125009 [42] J.W. Fang, H.Q. Fan, M.M. Li, C.B. Long, Nitrogen self-doped graphitic carbon nitride as efficient visible light photocatalyst for hydrogen evolution, J. Mater. Chem. A 3 (26) (2015) 13819-13826 [43] W.L. Shi, M.Y. Li, X.L. Huang, H.J. Ren, F. Guo, C. Yan, Three-dimensional Z-Scheme Ag3PO4/Co3(PO4)2@Ag heterojunction for improved visible-light photocatalytic degradation activity of tetracycline, J. Alloy. Compd. 818 (2020) 152883 [44] W.L. Shi, M.Y. Li, H.J. Ren, F. Guo, X.L. Huang, Y. Shi, Y.B. Tang, Construction of a 0D/1D composite based on Au nanoparticles/CuBi2O4 microrods for efficient visible-light-driven photocatalytic activity, Beilstein J Nanotechnol 10 (2019) 1360-1367 [45] J.J. Pan, F. Guo, H.R. Sun, Y.X. Shi, W.L. Shi, Nanodiamonds anchored on porous ZnSnO3 cubes as an efficient composite photocatalyst with improved visible-light photocatalytic degradation of tetracycline, Sep. Purif. Technol. 263 (2021) 118398 [46] S.H. Wang, L. Zhao, W. Huang, H. Zhao, J.Y. Chen, Q. Cai, X. Jiang, C.Y. Lu, W.L. Shi, Solvothermal synthesis of CoO/BiVO4 p-n heterojunction with micro-nano spherical structure for enhanced visible light photocatalytic activity towards degradation of tetracycline, Mater. Res. Bull. 135 (2021) 111161 [47] Y.Z. Hong, C.S. Li, G.Y. Zhang, Y.D. Meng, B.X. Yin, Y. Zhao, W.D. Shi, Efficient and stable Nb2O5 modified g-C3N4 photocatalyst for removal of antibiotic pollutant, Chem. Eng. J. 299 (2016) 74-84 |