[1] A.M. Beale, F. Gao, I. Lezcano-Gonzalez, C.H.F. Peden, J. Szanyi, Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials, Chem. Soc. Rev. 44 (2015) 7371-7405 [2] J.H. Wang, H.W. Zhao, G. Haller, Y.D. Li, Recent advances in the selective catalytic reduction of NOx with NH3 on Cu-Chabazite catalysts, Appl. Catal. B:Environ. 202 (2017) 346-354 [3] J.H. Wang, H. Chen, Z.C. Hu, M.F. Yao, Y.D. Li, A review on the Pd-based three-way catalyst, Catal. Rev. 57 (2015) 79-144 [4] P. Li, X.Y. Chen, Y. D. Li, J.W. Schwank, A review on oxygen storage capacity of CeO2-based materials:Influence factors, measurement techniques, and applications in reactions related to catalytic automotive emissions control, Catal. Today 327 (2019) 90-115 [5] H.W. Zhao, Y.N. Zhao, Y.H. Ma, X. Yong, M. Wei, H. Chen, C.J. Zhang, Y.D. Li, Enhanced hydrothermal stability of a Cu-SSZ-13 catalyst for the selective reduction of NOx by NH3 synthesized with SAPO-34 micro-crystallite as seed, J. Catal. 377 (2019) 218-223 [6] Y.L. Shan, J.P. Du, Y. Zhang, W.P. Shan, X.Y. Shi, Y.B. Yu, R.D. Zhang, X.J. Meng, F.S. Xiao, H. He, Selective catalytic reduction of NOx with NH3:opportunities and challenges of Cu-based small-pore zeolites, Natl. Sci. Rev. 8 (2021) nwab010 [7] D.W. Fickel, E. D'Addio, J.A. Lauterbach, R.F. Lobo, The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites, Appl. Catal. B:Environ. 102 (2011) 441-448 [8] F. Gao, J.H. Kwak, J. Szanyi, C.H.F. Peden, Current understanding of Cu-exchanged chabazite molecular sieves for use as commercial diesel engine deNOx catalysts, Top. Catal. 56 (2013) 1441-1459 [9] N. Zhu, Y.L. Shan, W.P. Shan, Y. Sun, K. Liu, Y. Zhang, H. He, Distinct NO2 effects on Cu-SSZ-13 and Cu-SSZ-39 in the selective catalytic reduction of NOx with NH3, Environ. Sci. Technol. 54 (2020) 15499-15506 [10] Y.L. Shan, W.P Shan, X.Y. Shi, J.P. Du, Y.B. Yu, H. He, A comparative study of the activity and hydrothermal stability of Al-rich Cu-SSZ-39 and Cu-SSZ-13, Appl. Catal. B:Environ. 264 (2020) 118511 [11] Y.S. Cheng, C. Lambert, D.H. Kim, J.H. Kwak, S.J. Cho, C.H.F. Peden, The different impacts of SO2 and SO3 on Cu/zeolite SCR catalysts, Catal. Today 151 (2010) 266-270 [12] W.K. Su, Z.G. Li, Y.N. Zhang, C.C. Meng, J.H. Li, Identification of sulfate species and their influence on SCR performance of Cu/CHA catalyst, Catal. Sci. Technol. 7 (2017) 1523-1528 [13] Y.L. Shan, X.Y. Shi, Z.D. Yan, J.J. Liu, Y.B. Yu, H. He, Deactivation of Cu-SSZ-13 in the presence of SO2 during hydrothermal aging, Catal. Today 320 (2019) 84-90 [14] L. Olsson, K. Wijayanti, K. Leistner, A. Kumar, S.Y. Joshi, K. Kamasamudram, N.W. Currier, A. Yezerets, A kinetic model for sulfur poisoning and regeneration of Cu/SSZ-13 used for NH3-SCR, Appl. Catal. B:Environ. 183 (2016) 394-406 [15] K. Wijayanti, K.P. Xie, A. Kumar, K. Kamasamudram, L. Olsson, Effect of gas compositions on SO2 poisoning over Cu/SSZ-13 used for NH3-SCR, Appl. Catal. B:Environ. 219 (2017) 142-154 [16] Y. Jangjou, Q. Do, Y.T. Gu, L. G. Lim, H. Sun, D. Wang, A. Kumar, J.H. Li, L.C. Grabow, W.S. Epling, Nature of Cu active centers in Cu-SSZ-13 and their responses to SO2 exposure, ACS Catal. 8 (2018) 1325-1337 [17] S. Dahlina, C. Lantto, J. Englund, B. Westerberg, F. Regali, M. Skoglundh, L. J. Pettersson, Chemical aging of Cu-SSZ-13 SCR catalysts for heavy-duty vehicles-Influence of sulfur dioxide, Catal. Today 320 (2019) 72-83 [18] K. Wijayanti, K. Leistner, S. Chand, A. Kumar, K. Kamasamudram, N.W. Currier, A. Yezerets, L. Olsson, Deactivation of Cu-SSZ-13 by SO2 exposure under SCR conditions, Catal. Sci. Technol. 6 (2016) 2565-2579 [19] A.J. Shih, I. Khurana, H. Li, J. González, A. Kumar, C. Paolucci, T.M. Lardinois, C.B. Jones, J.D. Albarracin Caballero, K. Kamasamudram, A. Yezerets, W.N. Delgass, J.T. Miller, A.L. Villa, W.F. Schneider, R. Gounder, F.H. Ribeiro, Spectroscopic and kinetic responses of Cu-SSZ-13 to SO2 exposure and implications for NOx selective catalytic reduction, Appl. Catal. A:Gen. 574 (2019) 122-131 [20] L. Wei, D.W. Yao, F. Wu, B. Liu, X.H. Hu, X.W. Li, X.L. Wang, Impact of hydrothermal aging on SO2 poisoning over Cu-SSZ-13 diesel exhaust SCR catalysts, In. Engin. Chem. Res. 58 (2019) 3949-3958 [21] Y. Jangjou, C.S. Sampara, Y.T. Gu, D. Wang, A. Kumar, J.H. Li, W.S. Epling, Mechanism-based kinetic modeling of Cu-SSZ-13 sulfation and desulfation for NH3-SCR applications, Re. Chem. Engin. 4 (2019) 1038-1049 [22] J. Luo, D. Wang, A. Kumar, J.H. Li, K. Kamasamudram, N. Currier, A. Yezerets, Identification of two types of Cu sites in Cu/SSZ-13 and their unique responses to hydrothermal aging and sulfur poisoning, Catal. Today 267 (2016) 3-9 [23] D.W. Brookshear, J.G. Nam, K. Nguyen, T.J. Toops, A. Binder, Impact of sulfation and desulfation on NOx reduction using Cu-chabazite SCR catalysts, Catal. Today 258 (2015) 359-366 [24] A. Kumar, M.A. Smith, K. Kamasamudram, N.W. Currier, H.M. An, A. Yezerets, Impact of different forms of feed sulfur on small-pore Cu-zeolite SCR catalyst, Catal. Today 231 (2014) 75-82 [25] A. Kumar, M.A. Smith, K. Kamasamudram, N.W. Currier, A. Yezerets, Chemical deSOx:An effective way to recover Cu-zeolite SCR catalysts from sulfur poisoning, Catal. Today 267 (2016) 10-16 [26] P.S. Hammershøi, Y. Jangjou, W.S. Epling, A.D. Jensen, T.V.W. Janssens, Reversible and irreversible deactivation of Cu-CHA NH3-SCRcatalysts by SO2 and SO3, Appl. Catal. B:Environ. 226 (2018) 38-45 [27] Y. Jangjou, D. Wang, A. Kumar, J.H. Li, W.S. Epling, SO2 poisoning of the NH3-SCR reaction over Cu-SAPO-34:Effect of ammonium sulfate versus other S-containing species, ACS Catal. 6 (2016) 6612-6622 [28] M.Q. Shen, H.Y. Wen, T. Hao, T. Yu, D.Q. Fan, J. Wang, W. Li, J.Q. Wang, Deactivation mechanism of SO2 on Cu/SAPO-34 NH3-SCR catalysts:structure and active Cu2+, Catal. Sci. Technol. 5 (2015) 1741-1749 [29] M.Q. Shen, Y. Zhang, J.Q. Wang, C. Wang, J. Wang, Nature of SO3 poisoning on Cu/SAPO-34 SCR catalysts, J. Catal. 358 (2018) 277-286 [30] L. Zhang, D. Wang, Y. Liu, K. Kamasamudram, J.H. Li, W. Epling, SO2 poisoning impact on the NH3-SCR reaction over a commercial Cu-SAPO-34 SCR catalyst, Appl. Catal. B:Environ. 156-157 (2014) 371-377 [31] Y. Jangjou, M. Ali, Q.Y. Chang, D. Wang, J.H. Li, A. Kumar, W.S. Epling, Effect of SO2 on NH3 oxidation over a Cu-SAPO-34 SCR catalyst, Catal. Sci. Technol. 6 (2016) 2679-2685 [32] C. Wang, J. Wang, J.Q. Wang, T. Yu, M.Q. Shen, W.L. Wang, W. Li, The effect of sulfate species on the activity of NH3-SCR over Cu/SAPO-34, Appl. Catal. B:Environ. 204 (2017) 239-249 [33] K. Wijayanti, S. Andonova, A. Kumar, J.H. Li, K. Kamasamudram, N.W. Currier, A. Yezerets, L. Olsson, Impact of sulfur oxide on NH3-SCR over Cu-SAPO-34, Appl. Catal. B:Environ. 166-167 (2015) 568-579 [34] J.P. Du, X.Y. Shi, Y.L. Shan, G.Y. Xu, Y. Sun, Y.J. Wang, Y.B. Yu, W.P. Shan, H. He, Effects of SO2 on Cu-SSZ-39 catalyst for the selective catalytic reduction of NOx with NH3, Catal. Sci. Technol. 10 (2020) 1256-1263 [35] X. Yong, C.J. Zhang, M. Wei, P.P. Xie, Y.D. Li, Promotion of the performance of Cu-SSZ-13 for selective catalytic reduction of NOx by ammonia in the presence of SO2 during high temperature hydrothermal aging, J. Catal. 394 (2020) 228-235 [36] L.M. Ren, L.F. Zhu, C.G. Yang, Y.M. Chen, Q. Sun, H.Y. Zhang, C.J. Li, F. Nawaz, X.J. Meng, F.S. Xiao, Designed copper-amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NOx by NH3, Chem. Commun. 47 (2011) 9789-9791 [37] L.J. Xie, F.D. Liu, L.M. Ren, X.Y. Shi, F.S. Xiao, H. He, Excellent performance of One-pot synthesized Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3, Environ. Sci. Technol. 48 (2014) 566-572 [38] F. Gao, E.D. Walter, E.M. Karp, J.Y. Luo, R.G. Tonkyn, J.H. Kwak, J. Szanyi, C.H.F. Peden, Structure-activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies, J. Catal. 300 (2013) 20-29 [39] H. Jiang, B. Guan, X.S. Peng, R. Zhan, H. Lin, Z. Huang, Influence of synthesis method on catalytic properties and hydrothermal stability of Cu/SSZ-13 for NH3-SCR reaction, Chem. Eng. J. 379 (2020) 122358 [40] T. Zhang, H.Z. Chang, Y.C. You, C.N. Shi, J.H. Li, Excellent activity and selectivity of one-pot synthesized Cu-SSZ-13 catalyst in the selective catalytic oxidation of ammonia to nitrogen, Environ. Sci. Technol. 52 (2018) 4802-4808 [41] D. Wang, F. Gao, C.H.F. Peden, J.H. Li, K. Kamasamudram, W.S. Epling, Selective catalytic reduction of NOx with NH3 over a Cu-SSZ-13 catalyst prepared by a solid-state ion-exchange method, ChemCatChem 6 (2014) 1579-1583 [42] J. Song, Y.L. Wang, E.D. Walter, N.M. Washton, D.H. Mei, L. Kovarik, M.H. Engelhard, S. Prodinger, Y. Wang, C.H.F. Peden, F. Gao, Toward rational design of Cu/SSZ-13 selective catalytic reduction catalysts:implications from atomic-level understanding of hydrothermal stability, ACS Catalysis 7 (2017) 8214-8227 [43] R. Martínez-Franco, M. Moliner, P. Concepcion, J.R. Thogersen, A. Corma, Synthesis, characterization and reactivity of high hydrothermally stable Cu-SAPO-34 materials prepared by "one-pot" processes, J. Catal. 314 (2014) 73-82 [44] H.W. Zhao, Y.N. Zhao, M.K. Liu, X.H. Li, Y.H. Ma, X. Yong, H. Chen, Y.D. Li, Phosphorus modification to improve the hydrothermal stability of a Cu-SSZ-13 catalyst for selective reduction of NOx with NH3, Appl. Catal. B:Environ. 252 (2019) 230-239 [45] X.S. Dong, J.H. Wang, H.W. Zhao, Y.D. Li, The promotion effect of CeOx on Cu-SAPO-34 catalyst for selective catalytic reduction of NOx with ammonia, Catal. Today 258, (2015) 28-34 [46] R.M. Ferrizz, R.J. Gorte, J.M. Vohs, TPD and XPS investigation of the interaction of SO2 with model ceria catalysts, Catal. Lett. 82(1-2) (2002) 123-129 [47] L.N. Kong, S.J. Zou, J. Mei, Y. Geng, H. Zhao, S.J. Yang, Outstanding resistance of H2S-modified Cu/TiO2 to SO2 for capturing gaseous Hg0 from nonferrous metal smelting flue gas:Performance and reaction mechanism, Environ. Sci. Technol. 52 (2018) 10003-10010 [48] S.J. Zou, Y. Liao, S.C. Xiong, N. Huang, Y. Geng, S.J. Yang, H2S-modified Fe-Ti spinel:A recyclable magnetic sorbent for recovering gaseous elemental mercury from flue gas as a Co-benefit of wet electrostatic precipitators, Environ. Sci. Technol. 51 (2017) 3426-3434 [49] T. Zhang, J.M. Li, J. Liu, D.X. Wang, Z. Zhao, K. Cheng, J.H. Li, High activity and wide temperature window of Fe-Cu-SSZ-13 in the selective catalytic reduction of NO with ammonia, AlChE J. 61 (2015) 3825-3837 [50] P.N.R. Vennestrøm, A. Katerinopoulou, R.R. Tiruvalam, A. Kustov, P.G. Moses, P. Concepcion, A. Corma, Migration of Cu ions in SAPO-34 and its impact on selective catalytic reduction of NOx with NH3, ACS Catal. 3 (2013) 2158-2161 [51] H.W. Zhao, H.S. Li, X.H. Li, M.K. Liu, Y.D. Li, The promotion effect of Fe to Cu-SAPO-34 for selective catalytic reduction of NOx with NH3, Catal. Today 297 (2017) 84-91 [52] J.F. Moulder, W.F. Stickle, P.E. Scobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy United States of America, 1992. [53] S.L. Bergman, S. Dahlin, V.V. Mesilov, Y. Xiao, J. Englund, S. Xi, C.H. Tang, M. Skoglundh, L.J. Pettersson, S.L. Bernasek, In-situ studies of oxidation/reduction of copper in Cu-CHA SCR catalysts:Comparison of fresh and SO2-poisoned catalysts, Appl. Catal. B:Environ. 269 (2020) 118722 |