[1] K.I. Adeniyi, H.H. Wan, C.E. Deering, F. Bernard, M.A. Chisholm, R.A. Marriott, High-pressure hydrogen sulfide experiments:How did our safety measures and hazard control work during a failure event?, Safety 6 (2020) 15 [2] F. Li, A. Laaksonen, X. Zhang, X. Ji, Rotten eggs revaluated:ionic liquids and deep eutectic solvents for removal and utilization of hydrogen sulfide, Ind. Eng. Chem. Res. 61 (2022) 2643-2671 [3] N. Zhang, D. Zeng, Z. Zhang, W. Zhao, G. Yao, Effect of flow velocity on pipeline steel corrosion behaviour in H2S/CO2 environment with sulphur deposition, Corros. Eng. Sci. Technol. 53 (2018) 370-377 [4] W. Gac, W. Zawadzki, M. Rotko, G. Słowik, M. Greluk, CO2 methanation in the presence of ce-promoted alumina supported nickel catalysts:H2S deactivation studies, Top. Catal. 62 (2019) 524-534 [5] M. Dan, S. Yu, Y. Li, S. Wei, J. Xiang, Y. Zhou, Hydrogen sulfide conversion:How to capture hydrogen and sulfur by photocatalysis, J. Photochem. Photobio. C 42 (2020) 100339 [6] S. Mizuta, W. Kondo, K. Fujii, H. Iida, S. Isshiki, H. Noguchi, T. Kikuchi, H. Sue, K. Sakai, Hydrogen production from hydrogen sulfide by the iron-chlorine hybrid process, Ind. Eng. Chem. Res. 30 (1991) 1601-1608 [7] Q. Huang, W. Li, T. Wu, X. Ma, K. Jiang, X. Jin, Monoethanolamine-enabled electrochemical detection of H2S in a hydroxyl-functionalized ionic liquid, Electrochem. Commun. 88 (2018) 93-96 [8] Y. Wang, Y. Liu, Y. Wang, Oxidation absorption of hydrogen sulfide from gas stream using vacuum ultraviolet/H2O2/urea wet scrubbing system, Process Saf. Environ. 140 (2020) 348-355 [9] R. Kapoor, P. Ghosh, M. Kumar, V.K. Vijay, Evaluation of biogas upgrading technologies and future perspectives:A review, Environ. Sci. Pollut. Res. 26 (2019) 11631-11661 [10] L. Peng, M. Shi, X. Zhang, W. Xiong, X. Hu, Z. Tu, Y. Wu, Facilitated transport separation of CO2 and H2S by supported liquid membrane based on task-specific protic ionic liquids, Green Chem. Eng. 3 (2022) 259-266 [11] X. Zhang, W. Xiong, L. Peng, Y. Wu, X. Hu, Highly selective absorption separation of H2S and CO2 from CH4 by novel azole-based protic ionic liquids, AIChE J. 66 (2020) e16936 [12] M. Shi, W. Xiong, Z. Tu, X. Zhang, X. Hu, Y. Wu, Task-specific deep eutectic solvents for the highly efficient and selective separation of H2S, Sep. Purif. Technol. 276 (2021) 119357 [13] M. Shi, W. Xiong, X. Zhang, J. Ji, X. Hu, Z. Tu, Y. Wu, Highly efficient and selective H2S capture by task-specific deep eutectic solvents through chemical dual-site absorption, Sep. Purif. Technol. 283 (2021) 120167 [14] W. Xiong, M. Shi, L. Peng, X. Zhang, X. Hu, Y. Wu, Low viscosity superbase protic ionic liquids for the highly efficient simultaneous removal of H2S and CO2 from CH4, Sep. Purif. Technol. 263 (2021) 118417 [15] D. Liu, B. Li, J. Wu, Y. Liu, Sorbents for hydrogen sulfide capture from biogas at low temperature:A review, Environ. Chem. Lett. 18 (2020) 113-128 [16] M.A.I. Ishak, K. Jumbri, S. Daud, M.B. Abdul Rahman, R. Abdul Wahab, H. Yamagishi, Y. Yamamoto, Molecular simulation on the stability and adsorption properties of choline-based ionic liquids/IRMOF-1 hybrid composite for selective H2S/CO2 capture, J. Hazard. Mater. 399 (2020) 123008 [17] K. Ling, V.S. Gangoli, A.R. Barron, Synergic adsorption of H2S using high surface area iron oxide-carbon composites at room temperature, Energ. Fuels 33 (2019) 7509-7521 [18] P. Zhang, W. Xiong, M. Shi, Z. Tu, X. Hu, X. Zhang, Y. Wu, Natural deep eutectic solvent-based gels with multi-site interaction mechanism for selective membrane separation of SO2 from N2 and CO2, Chem. Eng. J. 438 (2022) 135626 [19] X. Zhang, W. Xiong, M. Shi, Y. Wu, X. Hu, Task-specific ionic liquids as absorbents and catalysts for efficient capture and conversion of H2S into value-added mercaptan acids, Chem. Eng. J. 408 (2021) 127866 [20] X. Zhang, W. Xiong, X. Hu, Y. Wu, M. Shi, Research progress in the ionic liquid-mediated capture and conversion of H2S, Sci. Sin. Chim. 50 (2020) 594-602 [21] X. Zhang, W. Xiong, Z. Yin, Y. Chen, Y. Wu, X. Hu, A novel proton-gradient-transfer acid complexes as an efficient and reusable catalyst for fatty acid esterification, Green Energ. Environ. 7 (2022) 137-144 [22] G. Yu, Z. Wei, K. Chen, R. Guo, Z. Lei, Predictive molecular thermodynamic models for ionic liquids, AIChE J. 68 (2022) e17575 [23] D.J. Tao, X.C. An, Z.T. Gao, Z.M. Li, Y. Zhou, Cuprous-based composite ionic liquids for the selective absorption of CO:Experimental study and thermodynamic analysis, AIChE J. 62 (2022) e17631 [24] Y. Zhao, Y. Dong, Y. Guo, F. Huo, F. Yan, H. He, Recent progress of green sorbents-based technologies for low concentration CO2 capture, Chin. J. Chem. Eng. 31 (2021) 113-125 [25] X. Wang, X. Li, J. Yue, Y. Cheng, K. Xu, Q. Wang, F. Fan, Z. Wang, Z. Cui, Fabrication of poly(vinylidene fluoride) membrane via thermally induced phase separation using ionic liquid as green diluent, Chin. J. Chem. Eng. 28 (2020) 1415-1423 [26] Z. Cai, J. Zhang, Y. Ma, W. Wu, Y. Cao, K. Huang, L. Jiang, Chelation-activated multiple-site reversible chemical absorption of ammonia in ionic liquids, AIChE J. 68 (2022) e17632 [27] W. Xiong, M. Shi, X. Zhang, Z. Tu, X. Hu, Y. Wu, The efficient conversion of H2S into mercaptan alcohols mediated in protic ionic liquids under mild conditions, Green Chem. 23 (2021) 7969-7975 [28] P. Zhang, Y. Jin, Z. Jiang, G. Xie, Q. Zhang, X. Li, Gas-phase dehydrochlorination of 1,1,2,2-tetrachloroethane over the non-metal supported ionic liquid catalyst, Chin. J. Chem. Eng. 28 (2020) 1623-1627 [29] Q. Zhao, G. Wang, F. Liao, Y. Sha, F. Xu, C. Li, Z. Li, Y. Cao, Ionic liquid catalyzed solvent-free synthesis of chalcone and its derivatives under mild conditions, Chin. J. Chem. Eng. 33 (2021) 160-166 [30] W. Xiong, Z. Tu, Z. Yin, X. Zhang, X. Hu, Y. Wu, Supported ionic liquid gel membranes enhanced by ionization modification for sodium metal batteries, ACS Sustain. Chem. Eng. 9 (2021) 12100-12108 [31] D. Wang, J. Hwang, C. Chen, K. Kubota, K. Matsumoto, R. Hagiwara, A β"-alumina/inorganic ionic liquid dual electrolyte for intermediate-temperature sodium-sulfur batteries, Adv. Funct. Mater. 31 (2021) 2105524 [32] Y. Cai, Q. Zhang, Y. Lu, Z. Hao, Y. Ni, J. Chen, An ionic liquid electrolyte with enhanced Li+ transport ability enables stable Li deposition for high-performance Li-O2 batteries, Angew. Chem. Int. Ed. 60 (2021) 25973-25980 [33] H. Song, L. Liu, B. Feng, H. Wang, M. Xiao, H. Gai, Y. Tang, X. Qu, T. Huang, Modified g-C3N4 derived from ionic liquid and urea for promoting visible-light photodegradation of organic pollutants, Chin. J. Chem. Eng. 40 (2021) 293-303 [34] Z. Wang, L. Zhang, X. Shang, W. Wang, X. Yan, C. Yu, L.M. Wang, Enhanced electrochemical performance enabled by ionic-liquid-coated Na3SbS4 electrolyte encapsulated in flexible filtration membrane, Chem. Eng. J. 428 (2022) 132094 [35] S. Hu, M. Yi, H. Wu, T. Wang, X. Ma, X. Liu, J. Zhang, Ionic-liquid-assisted synthesis of N, F, and B co-doped CoFe2O4-x on multiwalled carbon nanotubes with enriched oxygen vacancies for Li-S batteries, Adv. Funct. Mater. 32 (2021) 2111084 [36] Y. Cao, J. Zhang, Y. Ma, W. Wu, K. Huang, L. Jiang, Designing low-viscosity deep eutectic solvents with multiple weak-acidic groups for ammonia separation, ACS Sustain. Chem. Eng. 9 (2021) 7352-7360 [37] K. Huang, X. Feng, X.M. Zhang, Y.T. Wu, X.B. Hu, The ionic liquid-mediated Claus reaction:A highly efficient capture and conversion of hydrogen sulfide, Green Chem. 18 (2016) 1859-1863 [38] F. Liu, J. Yu, A.B. Qazi, L. Zhang, X. Liu, Metal-based ionic liquids in oxidative desulfurization:A critical review, Environ. Sci. Technol. 55 (2021) 1419-1435 [39] Q. Zhang, Y. Hou, S. Ren, K. Zhang, W. Wu, Efficient regeneration of SO2-absorbed functional ionic liquids with H2S via the liquid-phase claus reaction, ACS Sustain. Chem. Eng. 7 (2019) 10931-10936 [40] P. Mishra, S. Kumari, S. Sen, Kinetic modeling on ionic liquid mediated bi-liquid phase transfer catalyzed synthesis of bis-(2-phenylethyl) sulfide with H2S-rich methyldiethanolamine, J. Mol. Liq. 271 (2018) 580-588 [41] J. Ji, W. Xiong, X. Zhang, L. Peng, M. Shi, Y. Wu, X. Hu, Reversible absorption of NF3 with high solubility in Lewis acidic ionic liquids, Chem. Eng. J. 2022, 440, 135902 [42] J. Hu, J. Liu, C. Yao, L. Zhou, Y. Wu, Z. Zhang, X. Hu, Effective hydrogenation of CO2 to formate catalyzed by ionic liquid modified acetate-Cu, Green Chem. 23 (2021) 951-956 [43] S. Kalhor, A. Fattahi, Design of carboxylate-based ionic liquids (ILs) containing OH and CF3 groups; influence of intramolecular hydrogen bonds and inductive effect on the binding energy between the cation and anion of ILs, a DFT study, New J. Chem. 45 (2021) 4710-4723 [44] X. Niu, Z. Kuang, M. Planells, Y. Guo, N. Robertson, A. Xia, Electron-donating strength dependent symmetry breaking charge transfer dynamics of quadrupolar molecules, Phys. Chem. Chem. Phys. 22 (2020) 15743-15750 [45] M. Arivazhagan, S. Manivel, S. Jeyavijayan, R. Meenakshi, Vibrational spectroscopic (FTIR and FT-Raman), first-order hyperpolarizablity, HOMO, LUMO, NBO, Mulliken charge analyses of 2-ethylimidazole based on Hartree-Fock and DFT calculations, Spectrochim. Acta A 134 (2015) 493-501 [46] S. Xu, X. Zhang, W. Xiong, P. Li, W. Ma, X. Hu, Y. Wu, Aerobic oxidation of aldehydes to acids in water with cyclic (alkyl)(amino)carbene copper under mild conditions, Chem. Commun. 58 (2022) 2132-2135 [47] C. Zhu, F. Li, J. Zhang, L. Zhang, J. Gao, Y. Ma, D. Xu, Y. Wang, Performance of functionalized ionic liquid with double chemical sites for separating phenolic compounds:Mechanism and liquid-liquid behavior studies, J. Environ. Chem. Eng. 9 (2021) 106790 [48] D. Shang, X. Liu, L. Bai, S. Zeng, Q. Xu, H. Gao, X. Zhang, Ionic liquids in gas separation processing, Curr. Opin. Green Sustain. Chem. 5 (2017) 74-81 [49] S. Ma, X. Shang, L. Li, Y. Song, Q. Pan, L. Sun, Energy-saving thermally coupled ternary extractive distillation process using ionic liquids as entrainer for separating ethyl acetate-ethanol-water ternary mixture, Sep. Purif. Technol. 226 (2019) 337-349 [50] Z. Zhu, Y. Ri, H. Jia, X. Li, Y. Wang, Y. Wang, Process evaluation on the separation of ethyl acetate and ethanol using extractive distillation with ionic liquid, Sep. Purif. Technol. 181 (2017) 44-52 [51] Z. Chen, Y. Shen, H. Zhang, Y. Dai, Y. Qu, Z. Zhu, P. Cui, Y. Ma, Y. Wang, Molecular interaction mechanism and performance evaluation in the liquid-liquid extraction process of ionic liquid-heptane-tertiary butanol based on molecular dynamics, J. Mol. Liq. 340 (2021) 116837 [52] Z. Chen, Y. Dai, S. Chi, Z. Su, J. Xing, Y. Wang, Y. Lu, Analysis and intensification of energy saving process for separation of azeotrope by ionic liquid extractive distillation based on molecular dynamics simulation, Sep. Purif. Technol. 276 (2021) 119254 [53] T. Shi, W. Chun, A. Yang, Y. Su, S. Jin, J. Ren, W. Shen, Optimization and control of energy saving side-stream extractive distillation with heat integration for separating ethyl acetate-ethanol azeotrope, Chem. Eng. Sci. 215 (2020) 115373 [54] A. Yang, Y. Su, I.L. Chien, S. Jin, C. Yan, S.a. Wei, W. Shen, Investigation of an energy-saving double-thermally coupled extractive distillation for separating ternary system benzene/toluene/cyclohexane, Energy 186 (2019) 115756 |