[1] M.J. Bos, S.R.A. Kersten, D.W.F. Brilman, Wind power to methanol: Renewable methanol production using electricity, electrolysis of water and CO2 air capture, Appl. Energy 264 (2020) 114672. http://dx.doi.org/10.1016/j.apenergy.2020.114672 [2] B.M. Tackett, E. Gomez, J.G. Chen, Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes, Nat. Catal. 2 (5) (2019) 381–386. https://www.nature.com/articles/s41929-019-0266-y%22%3e [3] Q.X. Yang, A. Skrypnik, A. Matvienko, H. Lund, M. Holena, E.V. Kondratenko, Revealing property-performance relationships for efficient CO2 hydrogenation to higher hydrocarbons over Fe-based catalysts: Statistical analysis of literature data and its experimental validation, Appl. Catal. B Environ. 282 (2021) 119554. http://dx.doi.org/10.1016/j.apcatb.2020.119554 [4] R. Satthawong, N. Koizumi, C.S. Song, P. Prasassarakich, Light olefin synthesis from CO2 hydrogenation over K-promoted Fe-co bimetallic catalysts, Catal. Today 251 (2015) 34–40. http://dx.doi.org/10.1016/j.cattod.2015.01.011 [5] F. Jiang, B. Liu, S.S. Geng, Y.B. Xu, X.H. Liu, Hydrogenation of CO2 into hydrocarbons: enhanced catalytic activity over Fe-based Fischer–Tropsch catalysts, Catal. Sci. Technol. 8 (16) (2018) 4097–4107. https://doi.org/10.1039/c8cy00850g [6] L.S. Guo, J. Sun, Q.J. Ge, N. Tsubaki, Recent advances in direct catalytic hydrogenation of carbon dioxide to valuable C2+ hydrocarbons, J. Mater. Chem. A 6 (46) (2018) 23244–23262. https://doi.org/10.1039/c8ta05377d [7] S. Yang, H.J. Chun, S. Lee, S.J. Han, K.Y. Lee, Y.T. Kim, Comparative study of olefin production from CO and CO2 using Na- and K-promoted zinc ferrite, ACS Catal. 10 (18) (2020) 10742–10759. https://doi.org/10.1021/acscatal.0c02429 [8] B. Yao, T. Xiao, O.A. Makgae, X. Jie, S. Gonzalez-Cortes, S. Guan, A.I. Kirkland, J.R. Dilworth, H.A. Al-Megren, S.M. Alshihri, P.J. Dobson, G.P. Owen, J.M. Thomas, P.P. Edwards, Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst, Nat. Commun. 11 (2020) 6395. https://www.nature.com/articles/s41467-020-20214-z%22%3e [9] J.H. Liu, A.F. Zhang, X. Jiang, M. Liu, Y.W. Sun, C.S. Song, X.W. Guo, Selective CO2 hydrogenation to hydrocarbons on Cu-promoted Fe-based catalysts: dependence on Cu-Fe interaction, ACS Sustainable Chem. Eng. 6 (8) (2018) 10182–10190. https://doi.org/10.1021/acssuschemeng.8b01491 [10] S. Li, A. Li, S. Krishnamoorthy, E. Iglesia, Effects of Zn, Cu, and K Promoters on the Structure and on the Reduction, Carburization, and Catalytic Behavior of Iron-Based Fischer–Tropsch Synthesis Catalysts, Catal Lett, 77 (2001) 197-205. [11] J.L. Zhang, S.P. Lu, X.J. Su, S.B. Fan, Q.X. Ma, T.S. Zhao, Selective formation of light olefins from CO2 hydrogenation over Fe-Zn-K catalysts, J. CO2 Util. 12 (2015) 95–100. http://dx.doi.org/10.1016/j.jcou.2015.05.004 [12] Y.H. Choi, E.C. Ra, E.H. Kim, K.Y. Kim, Y.J. Jang, K.N. Kang, S.H. Choi, J.H. Jang, J.S. Lee, Sodium-containing spinel zinc ferrite as a catalyst precursor for the selective synthesis of liquid hydrocarbon fuels, ChemSusChem 10 (23) (2017) 4764–4770. https://doi.org/10.1002/cssc.201701437 [13] Z.Q. Zhang, H.R. Yin, G.D. Yu, S. He, J.C. Kang, Z.M. Liu, K. Cheng, Q.H. Zhang, Y. Wang, Selective hydrogenation of CO2 and CO into olefins over sodium- and zinc-promoted iron carbide catalysts, J. Catal. 395 (2021) 350–361. http://dx.doi.org/10.1016/j.jcat.2021.01.036 [14] X. Jiang, X.W. Nie, X.W. Guo, C.S. Song, J.G. Chen, Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis, Chem. Rev. 120 (15) (2020) 7984–8034. https://pubmed.ncbi.nlm.nih.gov/32049507/ [15] C. Zhang, M.J. Xu, Z.X. Yang, M.H. Zhu, J. Gao, Y.F. Han, Uncovering the electronic effects of zinc on the structure of Fe5C2-ZnO catalysts for CO2 hydrogenation to linear α-olefins, Appl. Catal. B Environ. 295 (2021) 120287. http://dx.doi.org/10.1016/j.apcatb.2021.120287 [16] C. Zhang, C.X. Cao, Y.L. Zhang, X.L. Liu, J. Xu, M.H. Zhu, W.F. Tu, Y.F. Han, Unraveling the role of zinc on bimetallic Fe5C2–ZnO catalysts for highly selective carbon dioxide hydrogenation to high carbon α-olefins, ACS Catal. 11 (4) (2021) 2121–2133. https://doi.org/10.1021/acscatal.0c04627 [17] X.L. Liu, C. Zhang, P.F. Tian, M.J. Xu, C.X. Cao, Z.X. Yang, M.H. Zhu, J. Xu, Revealing the effect of sodium on iron-based catalysts for CO2 hydrogenation: insights from calculation and experiment, J. Phys. Chem. C 125 (14) (2021) 7637–7646. https://doi.org/10.1021/acs.jpcc.0c11123 [18] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B Condens. Matter 50 (24) (1994) 17953–17979. https://pubmed.ncbi.nlm.nih.gov/9976227/ [19] X.W. Nie, L.L. Meng, H.Z. Wang, Y.G. Chen, X.W. Guo, C.S. Song, DFT insight into the effect of potassium on the adsorption, activation and dissociation of CO2 over Fe-based catalysts, Phys. Chem. Chem. Phys. 20 (21) (2018) 14694–14707. https://pubmed.ncbi.nlm.nih.gov/29774346/ [20] X.L. Liu, C.X. Cao, P.F. Tian, M.H. Zhu, Y.L. Zhang, J. Xu, Y. Tian, Y.F. Han, Resolving CO2 activation and hydrogenation pathways over iron carbides from DFT investigation, J. CO2 Util. 38 (2020) 10–15. http://dx.doi.org/10.1016/j.jcou.2019.12.014 [21] M. Saito, J. Wu, K. Tomoda, I. Takahara, K. Murata, Effects of ZnO Contained in Supported Cu-Based Catalysts on Their Activities for Several Reactions, Catal Lett 83 (2002) 1-4. [22] Q. Chang, C.H. Zhang, C.W. Liu, Y.X. Wei, A.V. Cheruvathur, A.I. Dugulan, J.W. Niemantsverdriet, X.W. Liu, Y.R. He, M. Qing, L.R. Zheng, Y.F. Yun, Y. Yang, Y.W. Li, Relationship between iron carbide phases (ε-Fe2C, Fe7C3, and χ-Fe5C2) and catalytic performances of Fe/SiO2 Fischer-Tropsch catalysts, ACS Catal. 8 (4) (2018) 3304–3316. http://dx.doi.org/10.1021/acscatal.7b04085 [23] Y.F. Li, Z. Zhou, P.W. Shen, Z.F. Chen, Electronic and magnetic properties of hybrid graphene nanoribbons with zigzag-armchair heterojunctions, J. Phys. Chem. C 116 (1) (2012) 208–213. https://doi.org/10.1021/jp207788t [24] E. de Smit, B.M. Weckhuysen, The renaissance of iron-based Fischer–Tropsch synthesis: on the multifaceted catalyst deactivation behaviour, Chem. Soc. Rev. 37 (12) (2008) 2758. https://doi.org/10.1039/b805427d [25] T. Witoon, N. Chaipraditgul, T. Numpilai, V. Lapkeatseree, B.V. Ayodele, C.K. Cheng, N. Siri-Nguan, T. Sornchamni, J. Limtrakul, Highly active Fe-Co-Zn/K-Al2O3 catalysts for CO2 hydrogenation to light olefins, Chem. Eng. Sci. 233 (2021) 116428. http://dx.doi.org/10.1016/j.ces.2020.116428 [26] X.H. Gao, J.L. Zhang, N. Chen, Q.X. Ma, S.B. Fan, T.S. Zhao, N. Tsubaki, Effects of zinc on Fe-based catalysts during the synthesis of light olefins from the Fischer-Tropsch process, Chin. J. Catal. 37 (4) (2016) 510–516. http://dx.doi.org/10.1016/S1872-2067(15)61051-8 [27] N. Balakrishnan, B. Joseph, V.R. Bhethanabotla, Effect of Pt and Ru promoters on deactivation of Co catalysts by C deposition during Fischer-Tropsch synthesis: A DFT study, Appl. Catal. A Gen. 462-463 (2013) 107–115. http://dx.doi.org/10.1016/j.apcata.2013.05.001 [28] L. Falbo, M. Martinelli, C.G. Visconti, L. Lietti, P. Forzatti, C. Bassano, P. Deiana, Effects of Zn and Mn promotion in Fe-based catalysts used for COx hydrogenation to long-chain hydrocarbons, Ind. Eng. Chem. Res. 56 (45) (2017) 13146–13156. https://doi.org/10.1021/acs.iecr.7b01494 [29] Z.Q. Zhang, G.X. Huang, X.L. Tang, H.R. Yin, J.C. Kang, Q.H. Zhang, Y. Wang, Zn and Na promoted Fe catalysts for sustainable production of high-valued olefins by CO2 hydrogenation, Fuel 309 (2022) 122105. http://dx.doi.org/10.1016/j.fuel.2021.122105 |