[1] S.S. Park, M.H. Jung, Y.S. Lee, J.H. Bae, S.H. Kim, C.S.Ha, Functionalised mesoporous silica nanoparticles with excellent cytotoxicity against various cancer cells for pH-responsive and controlled drug delivery, Mater. Des. 184 (2019) 108187. [2] Zixuan, Huang, Sericin-based gadolinium nanoparticles as synergistically enhancing contrast agents for pH-responsive and tumor targeting magnetic resonance imaging, Mater. Des. 203 (2021) 109600. [3] Qiaojuan, Jia, PEGMA-modified bimetallic NiCo Prussian blue analogue doped with Tb(III) ions: Efficiently pH-responsive and controlled release system for anticancer drug, Chem. Eng. J. 389 (2020) 124468. [4] R. Gannimani, P. Walvekar, V.R. Naidu, T.M. Aminabhavi, T. Govender, Acetal containing polymers as pH-responsive nano-drug delivery systems, J Control Release 328 (2020) 736–761. [5] Rui, Guo, P.D. M D, Cell sheet formation enhances the therapeutic effects of human umbilical cord mesenchymal stem cells on myocardial infarction as a bioactive material, Bioact. Mater. 6 (9) (2021) 2999–3012. [6] X.J. Zhang, S.W. Niu, G.R. Williams, J.R. Wu, X. Chen, H. Zheng, L.M. Zhu, Dual-responsive nanoparticles based on chitosan for enhanced breast cancer therapy, Carbohydr Polym 221 (2019) 84–93. [7] S. Fujiwara, Y. Yoshizaki, A. Kuzuya, Y. Ohya, Temperature-responsive biodegradable injectable polymers with tissue adhesive properties, Acta Biomater 135 (2021) 318–330. [8] P.J. Yao, A.H. Zou, Z.F. Tian, W.Y. Meng, X.L. Fang, T. Wu, J.G. Cheng, Construction and characterization of a temperature-responsive nanocarrier for imidacloprid based on mesoporous silica nanoparticles, Colloids Surf B Biointerfaces 198 (2021) 111464. [9] Sigen, A, An injectable multi-responsive hydrogel as self-healable and on-demand dissolution tissue adhesive, Appl. Mater. Today 22 (2021) 100967. [10] Mengxue, He, Delivery of triptolide with reduction-sensitive polymer nanoparticles for liver cancer therapy on patient-derived xenografts models, Chin. Chem. Lett. 31 (12) (2020) 3178–3182. [11] S.H. He, S.L. Zhong, L.F. Xu, Y.M. Dou, Z.F. Li, F. Qiao, Y. Gao, X.J. Cui, Sonochemical fabrication of magnetic reduction-responsive alginate-based microcapsules for drug delivery, Int J Biol Macromol 155 (2020) 42–49. [12] B. Kumar, A. Murali, A.B. Bharath, S.Giri, Guar gum modified upconversion nanocomposites for colorectal cancer treatment through enzyme-responsive drug release and NIR-triggered photodynamic therapy, Nanotechnology 30 (31) (2019) 315102. [13] Y.N. Liu, A.G. Lin, J.W. Liu, X. Chen, X.F. Zhu, Y.C. Gong, G.L. Yuan, L.M. Chen, J. Liu, Enzyme-responsive mesoporous ruthenium for combined chemo-photothermal therapy of drug-resistant bacteria, ACS Appl Mater Interfaces 11 (30) (2019) 26590–26606. [14] X.L. Wei, Q. Luo, L. Sun, X. Li, H.Y. Zhu, P.J. Guan, M. Wu, K. Luo, Q.Y. Gong, Enzyme- and pH-sensitive branched polymer-doxorubicin conjugate-based nanoscale drug delivery system for cancer therapy, ACS Appl Mater Interfaces 8 (18) (2016) 11765–11778. [15] A. Barve, A. Jain, H. Liu, Z. Zhao, K. Cheng, Enzyme-responsive polymeric micelles of cabazitaxel for prostate cancer targeted therapy, Acta Biomater 113 (2020) 501–511. [16] Z.M. Li, Y. Yang, H.X. Wei, X.T. Shan, X.Z. Wang, M.T. Ou, Q.Y. Liu, N.S. Gao, H.Z. Chen, L. Mei, X.W. Zeng, Charge-reversal biodegradable MSNs for tumor synergetic chemo/photothermal and visualized therapy, J Control Release 338 (2021) 719–730. [17] W. Zhao, Y.M. Zhao, Q.F. Wang, T.Q. Liu, J.J. Sun, R. Zhang, Remote light-responsive nanocarriers for controlled drug delivery: Advances and perspectives, Small 15 (45) (2019) e1903060. [18] W.W. Zhao, H. Wang, H.M. Wang, Y. Han, Z.B. Zheng, X.D. Liu, B. Feng, H.Y. Zhang, Light-responsive dual-functional biodegradable mesoporous silica nanoparticles with drug delivery and lubrication enhancement for the treatment of osteoarthritis, Nanoscale 13 (13) (2021) 6394–6399. [19] X.W. Cai, Y. Jiang, M. Lin, J.Y. Zhang, H.H. Guo, F.W. Yang, W. Leung, C.S. Xu, Ultrasound-responsive materials for drug/gene delivery, Front Pharmacol 10 (2019) 1650. [20] B. Yang, J.Z. Du, Ultrasound-responsive homopolymer nanoparticles, Chin J Polym Sci 38 (4) (2020) 349–356. [21] D. Tarn, D.P. Ferris, J.C. Barnes, M.W. Ambrogio, J.F. Stoddart, J.I. Zink, A reversible light-operated nanovalve on mesoporous silica nanoparticles, Nanoscale 6 (6) (2014) 3335–3343. [22] J.W. Zhao, Z.S. He, B. Li, T.Y. Cheng, G.H. Liu, AND logic-like pH- and light-dual controlled drug delivery by surface modified mesoporous silica nanoparticles, Mater Sci Eng C Mater Biol Appl 73 (2017) 1–7. [23] A.F. Silva, I.B. Calhau, A.C. Gomes, A.A. Valente, I.S. Gonçalves, M. Pillinger, A hafnium-based metal-organic framework for the entrapment of molybdenum hexacarbonyl and the light-responsive release of the gasotransmitter carbon monoxide, Mater Sci Eng C Mater Biol Appl 124 (2021) 112053. [24] Nini, Li, Construction of photoresponsive azobenzene-decorated cationic surfactant-based self-assembled vesicles and controlled drug release, Colloids Surf. A Physicochem. Eng. Aspects 631 (2021) 127711. [25] T. Zhou, A. Pliss, Y. Chen, A.N. Kuzmin, P.N. Prasad, J.L. Qu, A dual mode nanophotonics concept for in situ activation of brain immune cells using a photoswitchable yolk-shell upconversion nanoformulation, Nanomed-Nanotechnol Biol Med 29 (2020) 102279. [26] Zhuxian, Zhou, A targeted nanoglobular contrast agent from host-guest self-assembly for MR cancer molecular imaging, Biomaterials 85 (2016) 168–179. [27] X.X. Chen, T.S. Chen, L.L. Zhang, Z.Y. Wang, Q.Q. Zhou, T.T. Huang, C. Ge, H.L. Xu, M.X. Zhu, F.Y. Zhao, M. Yao, H. Tian, H. Li, X.L. Zhu, J.J. Li, Cyclodextrin-mediated formation of porous RNA nanospheres and their application in synergistic targeted therapeutics of hepatocellular carcinoma, Biomaterials 261 (2020) 120304. [28] Y. Kim, D. Jeong, V.V. Shinde, Y.L. Hu, C. Kim, S. Jung, Azobenzene-grafted carboxymethyl cellulose hydrogels with photo-switchable, reduction-responsive and self-healing properties for a controlled drug release system, Int J Biol Macromol 163 (2020) 824–832. [29] Lee J, Park J M, Jang W D, Cyclodextrin-bearing telechelic poly(2-isopropyl-2-oxazoline): Extremely large shifts of phase transition temperature by photo-responsive guest inclusion, Carbohydr. Polym. 221 (2019) 48–54. [30] Q. Bian, S. Chen, Y.M. Xing, D. Yuan, L. Lv, G.J. Wang, Host-guest self-assembly toward reversible visible-light-responsive switching for bacterial adhesion, Acta Biomater 76 (2018) 39–45. [31] Pingping, Zhu, Enhance drug sensitivity of cancer stem cells using functionalized mesoporous silica nanoparticles, J. Control. Release 259 (2017) e104–e105. [32] Y.L. Miao, Y.C. Feng, J. Bai, Z.Y. Liu, X.B. Zhao, Optimized mesoporous silica nanoparticle-based drug delivery system with removable Manganese oxide gatekeeper for controlled delivery of doxorubicin, J Colloid Interface Sci 592 (2021) 227–236. [33] Z. Li, Y.D. He, L.H. Klausen, N. Yan, J. Liu, F.H. Chen, W. Song, M.D. Dong, Y.M. Zhang, Growing vertical aligned mesoporous silica thin film on nanoporous substrate for enhanced degradation, drug delivery and bioactivity, Bioact Mater 6 (5) (2021) 1452–1463. [34] Jinsong, Li, Reactive oxygen species-sensitive thioketal-linked mesoporous silica nanoparticles as drug carrier for effective antibacterial activity, Mater. Des. 195 (2020) 109021. [35] Liu H Q. Study on changes of the IR Absorption bands for the Guest Molecule in β-cyclodextrin inclusion complex[J]. Spectroscopy and Spectral Analysis, 28(10)(2008)91-92. [36] M.M. Rahman, A.Z. Shafiullah, A. Pal, M.A. Islam, I. Jahan, B.B.Saha, Study on optimum IUPAC adsorption isotherm models employing sensitivity of parameters for rigorous adsorption system performance evaluation, Energies 14 (22) (2021) 7478. |