[1] A. Shabanpour-Haghighi, M. Karimaghaei, An overview on multi-carrier energy networks:From a concept to future trends and challenges, Int. J. Hydrog. Energy 47(9)(2022)6164-6186. [2] M. Aziz, Liquid hydrogen:A review on liquefaction, storage, transportation, and safety, Energies 14(18)(2021)5917. [3] H. Li, X.W. Cao, Y. Liu, Y.B. Shao, Z.L. Nan, L. Teng, W.S. Peng, J. Bian, Safety of hydrogen storage and transportation:An overview on mechanisms, techniques, and challenges, Energy Rep. 8(2022)6258-6269. [4] O. Faye, J. Szpunar, U. Eduok, A critical review on the current technologies for the generation, storage, and transportation of hydrogen, Int. J. Hydrog. Energy 47(29)(2022)13771-13802. [5] X.W. Cao, J. Bian, Supersonic separation technology for natural gas processing:A review, Chem. Eng. Process. Process. Intensif. 136(2019)138-151. [6] C. Wen, X.W. Cao, Y. Yang, J. Zhang, Supersonic swirling characteristics of natural gas in convergent-divergent nozzles, Petrol. Sci. 8(1)(2011)114-119. [7] C. Wen, H.B. Ding, Y. Yang, Numerical simulation of nanodroplet generation of water vapour in high-pressure supersonic flows for the potential of clean natural gas dehydration, Energy Convers. Manag. 231(2021)113853. [8] Frankl. F, To the theory of the Laval nozzle, Izvestiya Rossiiskoi Akademii Nauk, Seriya Matematicheskaya 9(1945)387-422. [9] J.N. Chen, Z. Huang, Numerical study on carbon dioxide capture in flue gas by converging-diverging nozzle, Fuel 320(2022)123889. [10] J.N. Chen, Z. Huang, Spontaneous condensation of carbon dioxide in flue gas at supersonic state, Energy 254(2022)124418. [11] J.N. Chen, Z. Huang, A.N. Li, R. Gao, W.M. Jiang, Carbon capture in Laval nozzles with different bicubic parametric curves and translation of witoszynski curves, Energy 260(2022)125144. [12] Y. Liu, X.W. Cao, D. Guo, H.G. Cao, J. Bian, Influence of shock wave/boundary layer interaction on condensation flow and energy recovery in supersonic nozzle, Energy 263(2023)125662. [13] Y. Liu, X.W. Cao, J. Yang, Y.X. Li, J. Bian, Energy separation and condensation effects in pressure energy recovery process of natural gas supersonic dehydration, Energy Convers. Manag. 245(2021)114557. [14] H. Pathak, K. Mullick, S. Tanimura, B.E. Wyslouzil, Nonisothermal droplet growth in the free molecular regime, Aerosol Sci. Technol. 47(12)(2013)1310-1324. [15] J. Bian, W.M. Jiang, L. Teng, Y. Liu, S.W. Wang, Z.F. Deng, Structure improvements and numerical simulation of supersonic separators, Chem. Eng. Process. Process. Intensif. 110(2016)214-219. [16] J. Bian, Y. Liu, X.H. Zhang, Y.F. Li, L. Gong, X.W. Cao, Co-condensation and interaction mechanism of acidic gases in supersonic separator:A method for simultaneous removal of carbon dioxide and hydrogen sulfide from natural gas, Sep. Purif. Technol. 322(2023)124296. [17] X.W. Cao, W. Yang, Numerical simulation of binary-gas condensation characteristics in supersonic nozzles, J. Nat. Gas Sci. Eng. 25(2015)197-206. [18] X.W. Cao, X.D. Song, Q. Chu, L.S. Mu, Y.X. Li, J. Bian, An efficient method for removing hydrogen sulfide from natural gas using supersonic Laval nozzle, Process. Saf. Environ. Prot. 129(2019)220-229. [19] J.N. Chen, A.N. Li, Z. Huang, W.M. Jiang, G. Xi, Effect of shock wave on nucleation and droplet growth of CO2 in flue gas in supersonic separators, Gas Sci. Eng. 113(2023)204975. [20] Y. Liu, C.C. Wang, J.P. Wei, C.J. Chen, Effect of nozzle pressure ratio on pulsation frequency of air jets used in hole drilling, J. Petrol. Sci. Eng. 196(2021)107399. [21] Y. Yang, J.H. Walther, Y.Y. Yan, C. Wen, CFD modeling of condensation process of water vapor in supersonic flows, Appl. Therm. Eng. 115(2017)1357-1362. [22] C. Wen, H.B. Ding, Y. Yang, Optimisation study of a supersonic separator considering nonequilibrium condensation behaviour, Energy Convers. Manag. 222(2020)113210. [23] H.B. Ding, Y. Zhang, Y.Y. Dong, C. Wen, Y. Yang, High-pressure supersonic carbon dioxide (CO2) separation benefiting carbon capture, utilisation and storage (CCUS) technology, Appl. Energy 339(2023)120975. [24] H.B. Ding, Y. Zhang, C.Q. Sun, Y. Yang, C. Wen, Numerical simulation of supersonic condensation flows using Eulerian-Lagrangian and Eulerian wall film models, Energy 258(2022)124833. [25] C.Y. Han, W.M. Jiang, Y. Liu, Z.Z. Hu, Z.Y. Dou, Numerical simulation study on the structure optimization of liquid separation device in supersonic separator, Sep. Sci. Technol. 58(4)(2023)789-808. [26] J. Bian, X.W. Cao, W. Yang, M.A. Edem, P.B. Yin, W.M. Jiang, Supersonic liquefaction properties of natural gas in the Laval nozzle, Energy 159(2018)706-715. [27] G. Gyarmathy, The spherical droplet in gaseous carrier streams:Review and synthesis, Multiph. Sci. Technol. 1(1-4)(1982)99-279. [28] J. Bian, X.W. Cao, W. Yang, H. Du, P.B. Yin, Effects of external particles on the liquefaction property of natural gas in a Laval nozzle, Powder Technol. 339(2018)894-902. [29] National Institute of Standards and Technology, NIST chemistry WebBook, http://webbook.nist.gov/chemistry/,(2011). Accessed date:27 May 2018. [30] S.H.R. Shooshtari, A. Shahsavand, Maximization of energy recovery inside supersonic separator in the presence of condensation and normal shock wave, Energy 120(2017)153-163. [31] X.W. Liu, Z.L. Liu, Numerical investigation and improvement strategy of flow characteristics inside supersonic separator, Sep. Sci. Technol. 53(6)(2018)940-952. [32] D.Y. Hou, W.M. Jiang, W.X. Zhao, J. Bian, Y. Liu, X.Y. Lai, Effect of linetype of convergent section on supersonic condensation characteristics of CH4-CO2 mixture gas in Laval nozzle, Chem. Eng. Process. Process. Intensif. 133(2018)128-136. [33] C.Y. Han, W.M. Jiang, Y. Liu, Z.Y. Dou, B.X. Jin, Numerical study on carbon dioxide removal from the hydrogen-rich stream by supersonic Laval nozzle, Int. J. Hydrog. Energy 48(38)(2023)14299-14321. [34] C.A. Moses, G.D. Stein, On the growth of steam droplets formed in a Laval nozzle using both static pressure and light scattering measurements, J. Fluids Eng. 100(3)(1978)311-322. |