[1] K.Kuroda,M.Ueda,Cellular and molecular engineering of yeast Saccharomyces cerevisiae for advanced biobutanol production,FEMS Microbiol.Lett.363(3) (Feb 2016). [2] C.Weber,A.Farwick,F.Benisch,et al.,Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels,Appl.Microbiol.Biotechnol.87(4) (2010)1303-1315. [3] H.Sakuragi,K.Kuroda,M.Ueda,Molecular breeding of advanced microorganisms for biofuel production,J.Biomed.Biotechnol.1(17)(2011)1-11. [4] S.Atsumi,T.Hanai,J.C.Liao,Non-fermentative pathways for synthesis of branchedchain higher alcohols as biofuels,Nature 451(7174)(2008)86-89. [5] B.Blombach,B.J.Eikmanns,Current knowledge on isobutanol production with Escherichia coli,Bacillus subtilis and Corynebacterium glutamicum,Bioeng.Bugs 2(6)(2011)346-350. [6] W.Higashide,Y.Li,Y.Yang,J.C.Liao,Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose,Appl.Environ.Microbiol. 77(8)(2011)2727-2733. [7] S.Li,J.Wen,X.Jia,Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression,Appl.Microbiol.Biotechnol.91(3)(2011)577-589. [8] K.M.Smith,K.M.Cho,J.C.Liao,Engineering Corynebacterium glutamicum for isobutanol production,Appl.Microbiol.Biotechnol.87(3)(2010)1045-1055. [9] A.M.Varman,Y.Xiao,P.HB,et al.,Metabolic engineering of Synechocystis sp.strain PCC 6803 for isobutanol production,Appl.Environ.Microbiol.79(3)(2013)908-914. [10] B.-R.Oh,S.-Y.Heo,S.-M.Lee,et al.,Erratum to production of isobutanol from crude glycerol by a genetically engineered Klebsiella pneumoniae strain,Biotechnol.Lett.10(25)(2013)1-6. [11] M.X.He,B.Wu,H.Qin,et al.,Zymomonas mobilis:A novel platform for future biorefineries,Biotechnol.Biofuels 7(101)(2014)1-15. [12] X.Chen,K.F.Nielsen,I.Borodina,et al.,Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism,Biotechnol. Biofuels 4(21)(2011)1-12. [13] K.K.Hong,Nielsen,Metabolic engineering of Saccharomyces cerevisiae:A key cell factory platform for future biorefineries,Cell.Mol.Life Sci.69(16)(2012) 2671-2690. [14] E.P.Knoshaug,M.Zhang,Butanol tolerance in a selection of microorganisms,Appl. Biochem.Biotechnol.153(2009)13-20. [15] P.Fatehi,Recent advancements in various steps of ethanol,butanol,and isobutanol productions from woody materials,Biotechnol.Prog.29(2)(2013)297-310. [16] T. Kondo, H. Tezuka, J. Ishii, et al., Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae, J. Biotechnol. 159(1-2) (2012) 32-37. [17] W.-H. Lee, S.-O. Seo, Y.-H. Bae, et al., Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes, Bioprocess Biosyst. Eng. 35(9) (2012) 1467-1475. [18] E. Ofuonye, K. Kutin, D.T. Stuart, Engineering Saccharomyces cerevisiae fermentative pathways for the production of isobutanol, Biofuels 4(2) (2013) 185-201. [19] D. Brat, E. Boles, Isobutanol production from D-xylose by recombinant Saccharomyces cerevisiae, FEMS Yeast Res. 13(2013) 241-244. [20] D. Brat, C. Weber, W. Lorenzen, et al., Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae, Biotechnol. Biofuels 5(65) (2012) 1-16. [21] J.L. Avalos, G.R. Fink, G. Stephanopoulos, Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols, Nat. Biotechnol. 31(2013) 335-341. [22] K. Ida, J. Ishii, F. Matsuda, et al., Eliminating the isoleucine biosynthetic pathway to reduce competitive carbon outflow during isobutanol production by Saccharomyces cerevisiae, Microb. Cell Factories 14(2015) 62-70. [23] F. Matsuda, J. Ishii, T. Kondo, et al., Increased isobutanol production in Saccharomy cescerevisiae by eliminating competing pathways and resolving cofactor imbalance, Microb. Cell Factories 12(2013) 119-129. [24] B.J. Thomas, R. Rothstein, Elevated recombination rates in transcriptionally active DNA, Cell 56(4) (1989) 619-630. [25] R.D. Gietz, A. Sugino, New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites, Gene 74(2) (1988) 527-534. [26] A.L. Zhang, X. Chen, Improveethanol titer through minimizing glycerol titer in ethanol fermentation of Saccharomyces cerevisiae, Chin. J. Chem. Eng. 16(4) (2008) 620-625. |