[1] X.D. Ye, Y.Y. Jiang, X. Chen, B.S. Guo, S.B. Mao, Y.F. Guo, C.W. Zhao, Insights into the template effect on nanostructured CuO catalysts for electrochemical CO2 reduction to CO, Front. Energy Res. 10 (2022) 964011. [2] X. Li, S. Hong, L.D. Hao, Z.Y. Sun, Cadmium-based metal-organic frameworks for high-performance electrochemical CO2 reduction to CO over wide potential range, Chin. J. Chem. Eng. 43 (2022) 143–151. [3] X.F. Wei, S.X. Wei, S.F. Cao, Y.Y. Hu, S.N. Zhou, S.Y. Liu, Z.J. Wang, X.Q. Lu, Cu acting as Fe activity promoter in dual-atom Cu/Fe-NC catalyst in CO2RR to C1 products, Appl. Surf. Sci. 564 (2021) 150423. [4] S. Fan, H.Y. Cheng, M.M. Feng, X.M. Wu, Z.H. Fan, D.W. Pan, G.H. He, Catalytic hydrogenation performance of ZIF-8 carbide for electrochemical reduction of carbon dioxide, Chin. J. Chem. Eng. 39 (2021) 144–153. [5] J. Albo, A. Irabien, Non-dispersive absorption of CO2 in parallel and cross-flow membrane modules using EMISE, J. Chem. Technol. Biotechnol. 87 (10) (2012) 1502–1507. [6] K. Natte, H. Neumann, M. Beller, R.V. Jagadeesh, Transition-metal-catalyzed utilization of methanol as a C1 Source in organic synthesis, Angew. Chem. Int. Ed. 56 (23) (2017) 6384–6394. [7] E.J. Dufek, T.E. Lister, M.E. McIlwain, Bench-scale electrochemical system for generation of CO and syn-gas, J. Appl. Electrochem. 41 (6) (2011) 623–631. [8] D.T. Whipple, E.C. Finke, P.J.A. Kenis, Microfluidic reactor for the electrochemical reduction of carbon dioxide: The effect of pH, Electrochem. Solid State Lett. 13 (9) (2010): 109–111. [9] M.E. Boot-Handford, J.C. Abanades, E.J. Anthony, M.J. Blunt, S. Brandani, N. Mac Dowell, J.R. Fernández, M.C. Ferrari, R. Gross, J.P. Hallett, R.S. Haszeldine, P. Heptonstall, A. Lyngfelt, Z. Makuch, E. Mangano, R.T.J. Porter, M. Pourkashanian, G.T. Rochelle, N. Shah, J.G. Yao, P.S. Fennell, Carbon capture and storage update, Energy Environ. Sci. 7 (1) (2014) 130–189. [10] E. Barton Cole, P.S. Lakkaraju, D.M. Rampulla, A.J. Morris, E. Abelev, A.B. Bocarsly, Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: Kinetic, mechanistic, and structural insights, J. Am. Chem. Soc. 132 (33) (2010) 11539–11551. [11] J.H.Q. Lee, S.J.L. Lauw, R.D. Webster, The electrochemical reduction of carbon dioxide (CO2) to methanol in the presence of pyridoxine (vitamin B6), Electrochem. Commun. 64 (2016) 69–73. [12] J. Albo, A. Sáez, J. Solla-Gullón, V. Montiel, A. Irabien, Production of methanol from CO2 electroreduction at Cu2O and Cu2O/ZnO-based electrodes in aqueous solution, Appl. Catal. B 176-177 (2015) 709–717. [13] M. Irfan Malik, Z.O. Malaibari, M. Atieh, B. Abussaud, Electrochemical reduction of CO2 to methanol over MWCNTs impregnated with Cu2O, Chem. Eng. Sci. 152 (2016) 468–477. [14] X. Yang, J. Cheng, X. Yang, Y. Xu, W.F. Sun, J.H. Zhou, MOF-derived Cu@Cu2O heterogeneous electrocatalyst with moderate intermediates adsorption for highly selective reduction of CO2 to methanol, Chem. Eng. J. 431 (2022) 134171. [15] X.X. Chang, T. Wang, Z.J. Zhao, P.P. Yang, J. Greeley, R.T. Mu, G. Zhang, Z.M. Gong, Z.B. Luo, J. Chen, Y. Cui, G.A. Ozin, J.L. Gong, Tuning Cu/Cu2O interfaces for the reduction of carbon dioxide to methanol in aqueous solutions, Angew. Chem. Int. Ed. 57 (47) (2018) 15415–15419. [16] L.K. Cui, L.Q. Hu, Q.Q. Shen, X.G. Liu, H.S. Jia, J.B. Xue, Three-dimensional porous Cu2O with dendrite for efficient photocatalytic reduction of CO2 under visible light, Appl. Surf. Sci. 581 (2022) 152343. [17] F.F. Chang, J.C. Wei, Y.P. Liu, W.W. Wang, L. Yang, Z.Y. Bai, Surface/interface reconstruction in situ on Cu2O catalysts with high exponential facets toward enhanced electrocatalysis CO2 reduction to C2+ products, Appl. Surf. Sci. 611 (2023) 155773. [18] M. Le, M. Ren, Z. Zhang, P.T. Sprunger, R.L. Kurtz, J.C. Flake, Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces, J. Electrochem. Soc. 158 (5) (2011) E45. [19] M.M.M. Mostafa, W. Bajafar, L. Gu, K. Narasimharao, M. Abdel Salam, A. Alshehri, N.H. Khdary, S. Al-Faifi, A.D. Chowdhury, Electrochemical characteristics of nanosized Cu, Ni, and Zn cobaltite spinel materials, Catalysts 12 (8) (2022) 893. [20] K. Iwase, T. Hirano, I. Honma, Copper aluminum layered double hydroxides with different compositions and morphologies as electrocatalysts for the carbon dioxide reduction reaction, ChemSusChem 15 (2) (2022) e202102340. [21] X.M. Liu, X. Fan, H. Huang, J.Z. Gao, Electronic modulation of oxygen evolution on metal doped NiFe layered double hydroxides, J. Colloid Interface Sci. 587 (2021) 385–392. [22] G.R. Wang, Z.L. Jin, W.X. Zhang, Ostensibly phosphatized NiAl LDHs nanoflowers with remarkable charge storage property for asymmetric supercapacitors, J. Colloid Interface Sci. 577 (2020) 115–126. [23] J. Zheng, X.L. Chen, X. Zhong, S.Q. Li, T.Z. Liu, G.L. Zhuang, X.N. Li, S.W. Deng, D.H. Mei, J.G. Wang, Hierarchical porous NC@CuCo nitride nanosheet networks: Highly efficient bifunctional electrocatalyst for overall water splitting and selective electrooxidation of benzyl alcohol, Adv. Funct. Mater. 27 (46) (2017) 1704169. [24] Z.X. Xu, N. Wang, W. Chu, J. Deng, S.Z. Luo, in situ controllable assembly of layered-double-hydroxide-based nickel nanocatalysts for carbon dioxide reforming of methane, Catal. Sci. Technol. 5 (3) (2015) 1588–1597. [25] L.H. Wu, X.C. Zhou, G.P. Wan, Y.L. Tang, S.H. Shi, X.F. Xu, G.Z. Wang, Novel hierarchical CuNiAl LDH nanotubes with excellent peroxidase-like activity for wide-range detection of glucose, Dalton Trans. 50 (1) (2021) 95–102. [26] S. Ziegenheim, G. Varga, M. Szabados, P. Sipos, I. Pálinkó, Cu(II)Cr(III)-LDH: Synthesis, characterization, intercalation properties and a catalytic application, Chem. Pap. 72 (4) (2018) 897–902. [27] S.S. Ravuru, A. Jana, S. De, Synthesis of NiAl- layered double hydroxide with nitrate intercalation: Application in cyanide removal from steel industry effluent, J. Hazard. Mater. 373 (2019) 791–800. [28] A.A. Lobinsky, V.P. Tolstoy, Synthesis of CoAl-LDH nanosheets and N-doped graphene nanocomposite via Successive Ionic Layer Deposition method and study of their electrocatalytic properties for hydrogen evolution in alkaline media, J. Solid State Chem. 270 (2019) 156–161. [29] J.F. Chen, J.Q. Yang, L.T. Jiang, X.M. Wang, D.X. Yang, Q.Y. Wei, Y.L. Wang, R.J. Wang, Y.Y. Liu, Y.W. Yang, Improved electrochemical performances by Ni-catecholate-based metal organic framework grown on NiCoAl-layered double hydroxide/multi-wall carbon nanotubes as cathode catalyst in microbial fuel cells, Bioresour. Technol. 337 (2021) 125430. [30] J.F. Chen, J.Q. Yang, X.M. Wang, D.X. Yang, X. Wang, Y.H. Zhang, Y.R. Du, Y.L. Wang, Q.Y. Wei, R.J. Wang, Y.Y. Liu, Y.W. Yang, Enhanced bioelectrochemical performance of microbial fuel cell with titanium dioxide-attached dual metal organic frameworks grown on zinc aluminum - layered double hydroxide as cathode catalyst, Bioresour. Technol. 351 (2022) 126989. [31] W.K. Hu, Q. Liu, T.X. Lv, F. Zhou, Y.J. Zhong, Impact of interfacial CoOOH on OER catalytic activities and electrochemical behaviors of bimetallic CoxNi-LDH nanosheet catalysts, Electrochim. Acta 381 (2021) 138276. [32] X. Chen, J.P. Zhu, Y. Ding, X.X. Zuo, Synthesis of CuCo2O4 nanoparticles as an anode material with high performance for lithium-ion batteries, J. Mater. Sci. 32 (14) (2021) 18765–18776. [33] G.R. Wang, Z.L. Jin, Q.J. Guo, Ordered Self-supporting NiV LDHs@P-Nickel foam Nano-array as High-Performance supercapacitor electrode, J. Colloid Interface Sci. 583 (2021) 1–12. [34] H.Y. Cheng, X.M. Wu, X.C. Li, X.W. Nie, S. Fan, M.M. Feng, Z.H. Fan, M.Q. Tan, Y.G. Chen, G.H. He, Construction of atomically dispersed Cu-N4 sites via engineered coordination environment for high-efficient CO2 electroreduction, Chem. Eng. J. 407 (2021) 126842. [35] W.T. Li, P.F. Hou, Z. Wang, P. Kang, Synergistic effect of N-doped layered double hydroxide derived NiZnAl oxides in CO2 electroreduction, Sustain. Energy Fuels 3 (6) (2019) 1455–1460. [36] X.Q. Cui, Z.Y. Pan, L.J. Zhang, H.S. Peng, G.F. Zheng, Selective etching of nitrogen-doped carbon by steam for enhanced electrochemical CO2 reduction, Adv. Energy Mater. 7 (22) (2017) 1701456. [37] B. Li, Z.X. Xu, F.L. Jing, S.Z. Luo, N. Wang, W. Chu, Improvement of catalytic stability for CO2 reforming of methane by copper promoted Ni-based catalyst derived from layered-double hydroxides, J. Energy Chem. 25 (6) (2016) 1078–1085. [38] X.C. Xiao, G.F. Wang, M.M. Zhang, Z.Z. Wang, R.J. Zhao, Y.D. Wang, Electrochemical performance of mesoporous ZnCo2O4 nanosheets as an electrode material for supercapacitor, Ionics 24 (8) (2018) 2435–2443. [39] H.J. Wu, M. Qin, L.M. Zhang, NiCo2O4 constructed by different dimensions of building blocks with superior electromagnetic wave absorption performance, Compos. B 182 (2020) 107620. [40] H.C. Fu, A.T. Zhang, F.H. Jin, H.W. Guo, W.J. Huang, W.T. Cheng, J.Q. Liu, Origami and layered-shaped ZnNiFe-LDH synthesized on Cu(OH)2 nanorods array to enhance the energy storage capability, J. Colloid Interface Sci. 607 (2022) 1269–1279. [41] U. Guharoy, T. Ramirez Reina, E. Olsson, S. Gu, Q. Cai, Theoretical insights of Ni2P (0001) surface toward its potential applicability in CO2 conversion via dry reforming of methane, ACS Catal. 9 (4) (2019) 3487–3497. [42] J.Q. Yang, J.F. Chen, X.M. Wang, D.X. Yang, Y.W. Zhang, Y.Q. Wu, Y.Y. Zhao, Y.L. Wang, Q.Y. Wei, R.J. Wang, Y.Y. Liu, Y.W. Yang, Improving oxygen reduction reaction of microbial fuel cell by titanium dioxide attaching to dual metal organic frameworks as cathode, Bioresour. Technol. 349 (2022) 126851. [43] R. Shi, Y.Y. Zhang, Z.H. Wang, Facile synthesis of a ZnCo2O4 electrocatalyst with three-dimensional architecture for methanol oxidation, J. Alloys Compd. 810 (2019) 151879. [44] R.J. Lim, M.S. Xie, M.A. Sk, J.M. Lee, A. Fisher, X. Wang, K.H. Lim, A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts, Catal. Today 233 (2014) 169–180. [45] H. Seo, M.H. Katcher, T.F. Jamison, Photoredox activation of carbon dioxide for amino acid synthesis in continuous flow, Nat. Chem. 9 (5) (2017) 453–456. |