中国化学工程学报 ›› 2019, Vol. 27 ›› Issue (6): 1416-1428.DOI: 10.1016/j.cjche.2019.02.003
• Special Issue: Separation Process Intensification of Chemical Engineering • 上一篇 下一篇
Yilin Zhao, Yaoqiang Wang, Gang Xiao, Haijia Su
收稿日期:
2018-09-30
修回日期:
2019-01-11
出版日期:
2019-06-28
发布日期:
2019-08-19
通讯作者:
Gang Xiao, Haijia Su
基金资助:
Yilin Zhao, Yaoqiang Wang, Gang Xiao, Haijia Su
Received:
2018-09-30
Revised:
2019-01-11
Online:
2019-06-28
Published:
2019-08-19
Contact:
Gang Xiao, Haijia Su
Supported by:
摘要: Trace environmental pollutants have become a serious problem with special attention on the hazardous heavy metals, refractory organics, and pathogenic microorganisms. With coupling biosorption and photocatalysis to develop biomaterial/TiO2 composite photocatalysts is a promising method to remove these trace pollutants because of the synergistic effect. Biomaterials provide multiple function groups which can selectively and efficiently enrich trace pollutants onto the surface of the photocatalysts, thus facilitating the following transformation mediated by TiO2 photocatalysis. Biomaterials can also help the dispersion and recovery of TiO2, or even modify the band structure of TiO2. The fabrication of chitosan/TiO2, cellulose/TiO2, as well as other biomaterial/TiO2 composite photocatalysts is discussed in detail in this review. The application significance of these composite photocatalysts for the selective removal of trace pollutants is also addressed. Several problems should be solved before the realistic applications can be achieved as discussed in the final section.
Yilin Zhao, Yaoqiang Wang, Gang Xiao, Haijia Su. Fabrication of biomaterial/TiO2 composite photocatalysts for the selective removal of trace environmental pollutants[J]. 中国化学工程学报, 2019, 27(6): 1416-1428.
Yilin Zhao, Yaoqiang Wang, Gang Xiao, Haijia Su. Fabrication of biomaterial/TiO2 composite photocatalysts for the selective removal of trace environmental pollutants[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1416-1428.
[1] G. Xiao, X. Zhang, H. Su, T. Tan, Plate column biosorption of Cu(Ⅱ) on membranetype biosorbent (MBS) of Penicillium biomass:Optimization using statistical design methods, Bioresour. Technol. 143(2013) 490-498. [2] G. Xiao, H. Su, T. Tan, Synthesis of core-shell bioaffinity chitosan-TiO2 composite and its environmental applications, J. Hazard. Mater. 283(2015) 888-896. [3] G. Xiao, X. Zhang, W. Zhang, et al., Visible-light-mediated synergistic photocatalytic antimicrobial effects and mechanism of Ag-nanoparticles@chitosan-TiO2 organicinorganic composites for water disinfection, Appl. Catal. B Environ. 170(2015) 255-262. [4] J. Wang, C. Chen, Biosorbents for heavy metals removal and their future, Biotechnol. Adv. 27(2009) 195-226. [5] S.H. Ho, S. Zhu, J.S. Chang, Recent advances in nanoscale-metal assisted biochar derived from waste biomass used for heavy metals removal, Bioresour. Technol. 246(2017) 123-134. [6] J.Y. Lim, N.M. Mubarak, E.C. Abdullah, et al., Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals-A review, J. Ind. Eng. Chem. 66(2018) 29-44. [7] C. Li, M. Zhang, H. Zhong, et al., Synthesis of a bioadsorbent from jute cellulose, and application for aqueous Cd(Ⅱ) removal, Carbohydr. Polym. 189(2018) 152-161. [8] T. Esfandiyari, N. Nasirizadeh, M. Dehghani, et al., Graphene oxide based carbon composite as adsorbent for Hg removal:Preparation, characterization, kinetics and isotherm studies, Chin. J. Chem. Eng. 25(2017) 1170-1175. [9] K.H. Kim, S.K. Ihm, Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters:a review, J. Hazard. Mater. 186(2011) 16-34. [10] X. Zhang, Y. Ma, L. Xi, et al., Highly efficient photocatalytic removal of multiple refractory organic pollutants by BiVO4/CH3COO(BiO) heterostructured nanocomposite, Sci. Total. Environ. 647(2019) 245-254. [11] M.A. El-Liethy, K.Z. Elwakeel, M.S. Ahmed, Comparison study of Ag(I) and Au(Ⅲ) loaded on magnetic thiourea-formaldehyde as disinfectants for water pathogenic microorganism's deactivation, J. Environ. Chem. Eng. 6(2018) 4380-4390. [12] J. Schneider, M. Matsuoka, M. Takeuchi, et al., Understanding TiO2 photocatalysis:mechanisms and materials, Chem. Rev. 114(2014) 9919-9986. [13] Y. Ide, N. Inami, H. Hattori, et al., Remarkable charge separation and photocatalytic efficiency enhancement through interconnection of TiO2 nanoparticles by hydrothermal treatment, Angew. Chem. Int. Ed. 55(2016) 3600-3605. [14] M. Pelaez, N.T. Nolan, S.C. Pillai, et al., A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B Environ. 125(2012) 331-349. [15] K. Wenderich, G. Mul, Methods, mechanism, and applications of photodeposition in photocatalysis:a review, Chem. Rev. 116(2016) 14587-14619. [16] G. Xiao, Y. Zhao, L. Li, et al., Facile synthesis of dispersed Ag nanoparticles on chitosan-TiO2 composites as recyclable nanocatalysts for 4-nitrophenol reduction, Nanotechnology 29(2018) 155601. [17] G. Varshney, S.R. Kanel, D.M. Kempisty, et al., Nanoscale TiO2 films and their application in remediation of organic pollutants, Coord. Chem. Rev. 306(2016) 43-64. [18] B. Jalvo, M. Faraldos, A. Bahamonde, et al., Antimicrobial and antibiofilm efficacy of self-cleaning surfaces functionalized by TiO2 photocatalytic nanoparticles against Staphylococcus aureus and Pseudomonas putida, J. Hazard. Mater. 340(2017) 160-170. [19] X. Sheng, Z. Liu, R. Zeng, et al., Enhanced photocatalytic reaction at air-liquid-solid joint interfaces, J. Am. Chem. Soc. 139(2017) 12402-12405. [20] B. Volesky, Biosorption and me, Water Res. 41(2007) 4017-4029. [21] T.A. Nguyen, C.C. Fu, R.S. Juang, Effective removal of sulfur dyes from water by biosorption and subsequent immobilized laccase degradation on crosslinked chitosan beads, Chem. Eng. J. 304(2016) 313-324. [22] C. Wang, H. Wang, G. Gu, Ultrasound-assisted xanthation of cellulose from lignocellulosic biomass optimized by response surface methodology for Pb(Ⅱ) sorption, Carbohydr. Polym. 182(2018) 21-28. [23] H. Hamad, E. Bailón-García, S. Morales-Torres, et al., Physicochemical properties of new cellulose-TiO2 composites for the removal of water pollutants:Developing specific interactions and performances by cellulose functionalization, J. Environ. Chem. Eng. 6(2018) 5032-5041. [24] L. Wang, C. Zhang, F. Gao, et al., Algae decorated TiO2/Ag hybrid nanofiber membrane with enhanced photocatalytic activity for Cr(VI) removal under visible light, Chem. Eng. J. 314(2017) 622-630. [25] A. Muxika, A. Etxabide, J. Uranga, et al., Chitosan as a bioactive polymer:Processing, properties and applications, Int. J. Biol. Macromol. 105(2017) 1358. [26] A.E. Wiącek, A. Gozdecka, M. Jurak, Physicochemical characteristics of chitosan-TiO2 biomaterial. 1. stability and swelling properties, Ind. Eng. Chem. Res. 57(2018) 1859-1870. [27] L.N. Pincus, F. Melnikov, Y.J. Samani, et al., Multifunctional photoactive and selective adsorbent for arsenite and arsenate:Evaluation of nano titanium dioxide-enabled chitosan cross-linked with copper, J. Hazard. Mater. 358(2018) 145-154. [28] E. Chen, H. Su, W. Zhang, et al., A novel shape-controlled synthesis of dispersed silver nanoparticles by combined bioaffinity adsorption and TiO2 photocatalysis, Powder Technol. 212(2011) 166-172. [29] E. Chen, H. Su, T. Tan, Antimicrobial properties of silver nanoparticles synthesized by bioaffinity adsorption coupled with TiO2 photocatalysis, J. Chem. Technol. Biotechnol. 86(2011) 421-427. [30] Q. Li, H. Su, T. Tan, Synthesis of ion-imprinted chitosan-TiO2, adsorbent and its multi-functional performances, Biochem. Eng. J. 38(2008) 212-218. [31] X. Zhang, G. Xiao, Y. Wang, et al., Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications, Carbohydr. Polym. 169(2017) 101-107. [32] Y. Zhao, C. Tao, G. Xiao, et al., Controlled synthesis and wastewater treatment of Ag2O/TiO2 modified chitosan-based photocatalytic film, RSC Adv. 7(2017) 11211-11221. [33] F. Ding, H. Deng, Y. Du, et al., Emerging chitin and chitosan nanofibrous materials for biomedical applications, Nanoscale 6(2014) 9477-9493. [34] V. Sencadas, D.M. Correia, A. Areias, et al., Determination of the parameters affecting electrospun chitosan fiber size distribution and morphology, Carbohydr. Polym. 87(2012) 1295-1301. [35] F. Ali, S.B. Khan, T. Kamal, et al., Chitosan-titanium oxide fibers supported zerovalent nanoparticles:Highly efficient and easily retrievable catalyst for the removal of organic pollutants, Sci. Rep. 8(2018) 6260. [36] R.F. Perez, M.A. Fraga, Hemicellulose-derived chemicals:One-step production of furfuryl alcohol from xylose, Green Chem. 16(2014) 3942-3950. [37] J. Ríos-Gómez, B. Ferrer-Monteagudo, Á.I. López-Lorente, et al., Efficient combined sorption/photobleaching of dyes promoted by cellulose/titania-based nanocomposite films, J. Clean Prod. 194(2018) 167-173. [38] A.M. ElNahrawy, A.A. Haroun, I. Hamadneh, et al., Conducting cellulose/TiO2 composites by in situ polymerization of pyrrole, Carbohydr. Polym. 168(2017) 182-190. [39] G. Zhang, L. Chen, X. Fu, et al., Cellulose microfiber-supported TiO2@Ag nanocomposites:A dual-functional platform for photocatalysis and in situ reaction monitoring, Ind. Eng. Chem. Res. 57(2018) 4277-4286. [40] X. Zhang, S. Jing, Z. Chen, et al., Fabricating 3d hierarchical porous TiO2, and SiO2, with high specific surface area by using nanofibril-interconnected cellulose aerogel as a new biotemplate, Ind. Crop Prod. 109(2017) 790-802. [41] D.H. Yu, X. Yu, C. Wang, et al., Synthesis of natural cellulose-templated TiO2/Ag nanosponge composites and photocatalytic properties, ACS Appl. Mater. Interfaces 4(2012) 2781-2787. [42] W. Hu, S. Chen, J. Yang, et al., Functionalized bacterial cellulose derivatives and nanocomposites, Carbohydr. Polym. 101(2014) 1043-1060. [43] A.T. Kuvarega, B.B. Mamba, TiO2-based Photocatalysis:toward visible light-responsive photocatalysts through doping and fabrication of carbon-based nanocomposites, Crit. Rev. Solid State Mater. Sci. 42(2016) 1-52. [44] A.M. Mohamed, A.M. Muhazri, A.M.H. Zul, et al., An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications, Int. J. Biol. Macromol. 103(2017) 1232-1256. [45] N. Dal'Acqua, A.B. Mattos, I. Krindges, et al., Characterization and application of nanostructured films containing Au and TiO2 nanoparticles supported in bacterial cellulose, J. Phys. Chem. C 119(2014) 340-349. [46] F. Shi, T. Yu, S.C. Hu, et al., Synthesis of highly porous SiO2-(WO3)x·TiO2 composite aerogels using bacterial cellulose as template with solvothermal assisted crystallization, Chem. Eng. J. 292(2016) 105-112. [47] H. Huang, Y. Wang, C. Zou, et al., Titania tube-in-tube scaffolds with multilengthscale structural hierarchy and structure-enhanced functional performance, J. Phys. Chem. C 119(2015) 17552-17560. [48] J. Gutierrez, A. Tercjak, I. Algar, et al., Conductive properties of TiO2/bacterial cellulose hybrid fibres, J. Colloid Interface Sci. 377(2012) 88-93. [49] S. Li, S. Zhao, S. Qiang, et al., A novel zein/poly (propylene carbonate)/nano-TiO2 composite films with enhanced photocatalytic and antibacterial activity, Process Biochem. 70(2018) 198-205. [50] B. Jin, X. Li, X. Zhou, et al., Fabrication and characterization of nanocomposite film made from a jackfruit filum polysaccharide incorporating TiO2 nanoparticles by photocatalysis, RSC Adv. 7(2017) 16931-16937. [51] H. Kobayashi, A. Fukuoka, Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass, Green Chem. 15(2013) 1740-1763. [52] X. Chen, D.-H. Kuo, D. Lu, et al., Synthesis and photocatalytic activity of mesoporous TiO2 nanoparticle using biological renewable resource of un-modified lignin as a template, Microporous Mesoporous Mater. 223(2016) 145-151. [53] N. Srisasiwimon, S. Chuangchote, N. Laosiripojana, et al., TiO2/lignin-based carbon composited photocatalysts for enhanced photocatalytic conversion of lignin to high value chemicals, ACS Sustain. Chem. Eng. 6(2018) 13968-13976. [54] H. Huo, H. Su, T. Tan, The influence of trace TiO2, on adsorption of Ag+-imprinted adsorbents made from chitosan and mycelium, Biotechnol. Bioprocess Eng. 13(2008) 77-83. [55] J.A. Maciá-Agulló, A. Corma, H. Garcia, Photobiocatalysis:The power of combining photocatalysis and enzymes, Chem. Eur. J. 21(2015) 10940-10959. [56] M.A. Mohamed, W.N.W. Salleh, J. Jaafar, et al., Carbon as amorphous shell and interstitial dopant in mesoporous rutile TiO2:Bio-template assisted sol-gel synthesis and photocatalytic activity, Appl. Surf. Sci. 393(2017) 46-59. [57] T. Qian, H. Su, T. Tan, The bactericidal and mildew-proof activity of a TiO2-chitosan composite, Journal of Photochemistry & Photobiology A Chemistry 218(2011) 130-136. [58] D. Delai'aSun, Facile fabrication of porous chitosan/TiO2/Fe3O4 microspheres with multifunction for water purifications, New J. Chem. 35(2011) 137-140. [59] M.N.I. Amir, N.M. Julkapli, S.B.A. Hamid, Incorporation of chitosan and glass substrate for improvement in adsorption, separation, and stability of TiO2 photodegradation, Int. J. Environ. Sci. Technol. 13(2016) 865-874. [60] S. Mahdavi, Nano-TiO2, modified with natural and chemical compounds as efficient adsorbents for the removal of Cd2+, Cu2+, and Ni2+, from water, Clean Techn. Environ. Policy. 18(2016) 81-94. [61] L. Zhang, W. Xia, X. Liu, et al., Synthesis of titanium cross-linked chitosan composite for efficient adsorption and detoxification of hexavalent chromium from water, J. Mater. Chem. A 3(2014) 331-340. [62] S. Wu, J. Kan, X. Dai, et al., Ternary carboxymethyl chitosan-hemicellulose-nanosized TiO2, composite as effective adsorbent for removal of heavy metal contaminants from water, Fibers Polym. 18(2017) 22-32. [63] R. Karthik, S. Meenakshi, Removal of Pb(Ⅱ) and Cd(Ⅱ) ions from aqueous solution using polyaniline grafted chitosan, Chem. Eng. J. 263(2015) 168-177. [64] S. Komatsuda, Y. Asakura, J.J.M. Vequizo, et al., Enhanced photocatalytic NOx decomposition of visible-light responsive F-TiO2/(N,C)-TiO2 by charge transfer between FTiO2 and (N,C)-TiO2 through their doping levels, Appl. Catal. B Environ. 238(2018) 358-364. [65] L.N. Pincus, F. Melnikov, J.S. Yamani, et al., Multifunctional photoactive and selective adsorbent for arsenite and arsenate:Evaluation of Nano titanium dioxide-enabled chitosan cross-linked with copper, J. Hazard. Mater. 358(2018) 145-154. [66] Y. Tao, L. Ye, J. Pan, et al., Removal of Pb(Ⅱ) from aqueous solution on chitosan/TiO (2) hybrid film, J. Hazard. Mater. 161(2009) 718-722. [67] Z. Zainal, L.K. Hui, M.Z. Hussein, et al., Characterization of TiO(2)-chitosan/glass photocatalyst for the removal of a monoazo dye via photodegradation-adsorption process, J. Hazard. Mater. 164(2009) 138-145. [68] J. Ríos-Gómez, B. Ferrer-Monteagudo, A.I. López-Lorente, et al., Efficient combined absorption/photobleaching of dyes promoted by cellulose/titania-based nanocomposite films, J. Clean Prod. 194(2018) 167-173. [69] P. Magesan, S. Sanuja, M.J. Umapathy, Novel hybrid chitosan blended MoO3-TiO2 nanocomposite film:Evaluation of its solar light photocatalytic and antibacterial activities, RSC Adv. 5(2015) 42506-42515. [70] H. Zhu, R. Jiang, L. Xiao, et al., CdS nanocrystals/TiO2/crosslinked chitosan composite:Facile preparation, characterization and adsorption-photocatalytic properties, Appl. Surf. Sci. 273(2013) 661-669. [71] H. Zhu, R. Jiang, Y. Fu, et al., Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulated solar irradiation, Desalination 286(2012) 41-48. [72] M.H. Farzana, S. Meenakshi, Synergistic effect of chitosan and titanium dioxide on the removal of toxic dyes by the photodegradation technique, Ind. Eng. Chem. Res. 53(2013) 55-63. [73] M.S. Stan, I.C. Nica, A. Dinischiotu, et al., Photocatalytic, antimicrobial and biocompatibility features of cotton knit coated with Fe-N-doped titanium dioxide nanoparticles, Materials 9(2016) 789. [74] E.P. Favvas, G.E. Romanos, Alginate fibers as photocatalyst immobilizing agents applied in hybrid photocatalytic/ultrafiltration water treatment processes, Water Res. 46(2012) 1858-1872. [75] X. Zhang, X. Zhao, H. Su, Degradation characteristic of TiO2-chitosan adsorbent on Rhodamine B and purification of industrial wastewater, Korean J. Chem. Eng. 28(2011) 1241-1246. [76] K.J. Rao, S. Paria, Phytochemicals mediated synthesis of multifunctional Ag-Au-TiO2, heterostructure for photocatalytic and antimicrobial applications, J. Clean. Prod. 165(2017) 360-368. [77] L. Frunza, L. Diamandescu, I. Zgura, et al., Photocatalytic activity of wool fabrics deposited at low temperature with ZnO or TiO2, nanoparticles:Methylene blue degradation as a test reaction, Catal. Today 306(2017) 251-259. [78] S.G. Kuntzler, J.A.V. Costa, M.G.D. Morais, Development of electrospun nanofibers containing chitosan/PEO blend and phenolic compounds with antibacterial activity, Int. J. Biol. Macromol. 117(2018) 800-806. [79] K. Dutta, K. Nag, V. Booth, et al., Paradoxical bactericidal effects of hydrophobic lung surfactant proteins and their peptide mimics using liposome molecular Trojan, J. Oleo Sci. 67(2018) 1043-1057. [80] Liu X. Fei, Guan Y. Lin, Yang D. Zhi, et al., Antibacterial action of chitosan and carboxymethylated chitosan, J. Appl. Polym. Sci. 79(2015) 1324-1335. [81] U. Siripatrawan, P. Kaewklin, Fabrication and characterization of multifunctional active food packaging from chitosan-titanium dioxide nanocomposite as ethylene scavenging and antimicrobial film, Food Hydrocoll. 84(2018) 125-134. [82] A.V. Raut, H.M. Yadav, A. Gnanamani, et al., Synthesis and characterization of chitosan-TiO2:Cu nanocomposite and their enhanced antimicrobial activity with visible light, Colloids Surf. B:Biointerfaces 148(2016) 566-575. [83] G. Xiao, X. Zhang, Y. Zhao, et al., The behavior of active bactericidal and antifungal coating under visible light irradiation, Appl. Surf. Sci. 292(2014) 756-763. [84] W. Xu, W. Xie, X. Huang, et al., The graphene oxide and chitosan biopolymer loads TiO2 for antibacterial and preservative research, Food Chem. 221(2017) 267-277. [85] B. Li, Y. Hao, X. Shao, et al., Synthesis of hierarchically porous metal oxides and Au/TiO2 nanohybrids for photodegradation of organic dye and catalytic reduction of 4-nitrophenol, J. Catal. 329(2015) 368-378. [86] L. Huang, W. Fu, X. Fu, et al., Facile and large-scale preparation of N doped TiO2 photocatalyst with high visible light photocatalytic activity, Mater. Lett. 209(2017) 585-588. [87] L. Lopez, W.A. Daoud, D. Dutta, Preparation of large scale photocatalytic TiO2 films by the sol-gel process, Surf. Coat Technol. 205(2010) 251-257. [88] C. Wang, H. Liu, Y. Qu, TiO2-based photocatalytic process for purification of polluted water:bridging fundamentals to applications, J. Nanomater. 2013(2013) 1. [89] S.Y.A. Salgado, R.M.R. Zamora, R. Zanella, et al., Photocatalytic hydrogen production in a solar pilot plant using a Au/TiO2 photocatalyst, Int. J. Hydrog. Energy 41(2016) 11933-11940. [90] M.I. Maldonado, A. López-Martín, G. Colón, et al., Solar pilot plant scale hydrogen generation by irradiation of Cu/TiO2 composites in presence of sacrificial electron donors, Appl. Catal. B Environ. 229(2018) 15-23. [91] B. Gupta, A.A. Melvin, T. Matthews, et al., TiO2 modification by gold (Au) for photocatalytic hydrogen (H2) production, Renew. Sust. Energ. Rev. 58(2016) 1366-1375. [92] H. Zhao, Preparation of photocatalyst titanium dioxide and its application in printing and dyeing wastewater treatment, Thesis in Chinese, Tianjin University, 2009. |
[1] | Jinlong Liu, Chenye Wang, Xingrui Wang, Chen Zhao, Huiquan Li, Ganyu Zhu, Jianbo Zhang. Reconstruction and recovery of anatase TiO2 from spent selective catalytic reduction catalyst by NaOH hydrothermal method[J]. 中国化学工程学报, 2023, 60(8): 53-60. |
[2] | Ming Liu, Ying Li, Rui Wang, Guoqiang Shao, Pengpeng Lv, Jun Li, Qingshan Zhu. Uniform deposition of ultra-thin TiO2 film on mica substrate by atmospheric pressure chemical vapor deposition: Effect of precursor concentration[J]. 中国化学工程学报, 2023, 60(8): 99-107. |
[3] | Yaoyao Peng, Lei Song, Siru Lu, Ziyu Su, Kui Ma, Siyang Tang, Shan Zhong, Hairong Yue, Bin Liang. Superior resistance to alkali metal potassium of vanadium-based NH3-SCR catalyst promoted by the solid superacid SO42--TiO2[J]. 中国化学工程学报, 2023, 55(3): 246-256. |
[4] | Zhen He, Yu Zhou, Yuxin Wang, Pingyi Guo, Wensen Jiang, Caizhen Yao, Xin Shu. Preparation and properties of Ni-W-P-TiO2 nanocomposite coatings developed by a sol-enhanced electroplating method[J]. 中国化学工程学报, 2022, 44(4): 369-376. |
[5] | Xingmei Guo, Jinfeng Xie, Jing Wang, Shangqing Sun, Feng Zhang, Fu Cao, Yuanjun Liu, Xiangjun Zheng, Junhao Zhang, Qinghong Kong. Fabricating titanium dioxide/N-doped carbon nanofibers as advanced interlayer for improving cycling reversibility of lithium-sulfur batteries[J]. 中国化学工程学报, 2022, 52(12): 88-94. |
[6] | Yingzhen Zhang, Yonggang Lei, Tianxue Zhu, Zengxing Li, Shen Xu, Jianying Huang, Xiao Li, Weilong Cai, Yuekun Lai, Xiaojun Bao. Surface plasmon resonance metal-coupled biomass carbon modified TiO2 nanorods for photoelectrochemical water splitting[J]. 中国化学工程学报, 2022, 41(1): 403-411. |
[7] | Raza Ullah, Jihong Sun, Anadil Gul, Tallat Munir, Xia Wu. Evaluations of physico-chemical properties of TiO2/clinoptilolite synthesized via three methods on photocatalytic degradation of crystal violet[J]. 中国化学工程学报, 2021, 33(5): 181-189. |
[8] | Mingjie Wei, Yong Wang. Structure and dynamics of water in TiO2 nano slits: The influence of interfacial interactions and pore sizes[J]. 中国化学工程学报, 2021, 29(3): 67-74. |
[9] | Zihao Yao, Jinyan Zhao, Chenxia Zhao, Shengwei Deng, Guilin Zhuang, Xing Zhong, Zhongzhe Wei, Yang Li, Shibin Wang, Jianguo Wang. A first-principles study of reaction mechanism over carbon decorated oxygen-deficient TiO2 supported Pd catalyst in direct synthesis of H2O2[J]. 中国化学工程学报, 2021, 29(3): 126-134. |
[10] | Yuan Su, Keming Ji, Jiayao Xun, Kan Zhang, Ping Liu, Liang Zhao. Catalytic oxidation of low concentration formaldehyde over Pt/TiO2 catalyst[J]. 中国化学工程学报, 2021, 29(1): 190-195. |
[11] | Lan Lan, Yan Shao, Yilai Jiao, Rongxin Zhang, Christopher Hardacre, Xiaolei Fan. Systematic study of H2 production from catalytic photoreforming of cellulose over Pt catalysts supported on TiO2[J]. 中国化学工程学报, 2020, 28(8): 2084-2091. |
[12] | Dai Shi, He Yang, Xiangxin Xue. Preparation, characterization and antibacterial properties of cobalt doped titania nanomaterials[J]. 中国化学工程学报, 2020, 28(5): 1474-1482. |
[13] | Fan Pan, Guobing Zhou, Liangliang Huang, Wei Li, Mingshen Lin, Chang Liu. Interfacial potassium induced enhanced Raman spectroscopy for single-crystal TiO2 nanowhisker[J]. 中国化学工程学报, 2020, 28(3): 889-895. |
[14] | Yahua Lu, Zhenping Qin, Naixin Wang, Hongxia Guo, Quanfu An, Yucang Liang. TiO2-incorporated polyelectrolyte composite membrane with transformable hydrophilicity/hydrophobicity for nanofiltration separation[J]. 中国化学工程学报, 2020, 28(10): 2533-2541. |
[15] | Zhenxiao Lu, Wenxian Wang, Jun Zhou, Zhongchao Bai. FeS2@TiO2 nanorods as high-performance anode for sodium ion battery[J]. 中国化学工程学报, 2020, 28(10): 2699-2706. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||