[1] Y. Chen, I.E. Grossmann, D.C. Miller, Computational strategies for large-scale MILP transshipment models for heat exchanger network synthesis, Comput. Chem. Eng. 82(2015) 68-83. [2] Y. Wang, Y. Wei, X. Feng, K.H. Chu, Synthesis of heat exchanger networks featuring batch streams, Appl. Energy 114(2) (2014) 30-44. [3] R.E. Swaney, I.E. Grossmann, An index for operational flexibility in chemical process design. Part I:Formulation and theory, AIChE J 31(4) (1985) 621-630. [4] K.P. Papalexandri, E.N. Pistikopoulos, A multiperiod MINLP model for improving the flexibility of heat exchanger networks, Comput. Chem. Eng. 17(93) (1993) S111-S116. [5] J. Li, J. Du, Z. Zhao, P. Yao, Structure and area optimization of flexible heat exchanger networks, Ind. Eng. Chem. Res. 53(29) (2014) 11779-11793. [6] H. Zhou, Y. Qian, X. Li, J. Cui, A. Kraslawski, The dynamic flexibility of batch exothermic reaction system:Take into account the effect of the initial operational temperature, Chin. J. Chem. Eng. 16(6) (2008) 916-922. [7] M.K.A. Hamid, G. Sin, R. Gani, Integration of process design and controller design for chemical processes using model-based methodology, Comput. Chem. Eng. 34(5) (2010) 683-699. [8] F. Xu, H. Jiang, R. Wang, X. Luo, Influence of design margin on operation optimization and control performance of chemical processes, Chin. J. Chem. Eng. 22(1) (2014) 51-58. [9] Z. Yuan, B. Chen, G. Sin, R. Gani, State-of-the-art and progress in the optimization-based simultaneous design and control for chemical processes, AICHE J. 58(6) (2012) 1640-1659. [10] M. Escobar, J.O. Trierweiler, I.E. Grossmann, Simultaneous synthesis of heat exchanger networks with operability considerations:Flexibility and controllability, Comput. Chem. Eng. 55(32) (2013) 158-180. [11] Z. Yuan, B. Chen, J. Zhao, An overview on controllability analysis of chemical processes, AICHE J. 57(5) (2011) 1185-1201. [12] V. Lersbamrungsuk, T. Srinophakun, S. Narasimhan, S. Skogestad, Control structure design for optimal operation of heat exchanger networks, AICHE J. 54(1) (2008) 150-162. [13] L. Kang, W. Tang, Y. Liu, P. Daoutidis, Control configuration synthesis using agglomerative hierarchical clustering:A graph-theoretic approach, J. Process Control 46(2016) 43-54. [14] I.K. Kookos, J.D. Perkins, Control structure selection based on economics:Generalization of the back-off methodology, AICHE J. 62(9) (2016) 3056-3064. [15] L. Braccia, P.A. Marchetti, P. Luppi, D. Zumoffen, Multivariable control structure design based on mixed-integer quadratic programming, Ind. Eng. Chem. Res. 56(39) (2017) 11228-11244. [16] Y.L. Huang, L.T. Fan, Distributed strategy for integration of process design and control:A knowledge engineering approach to the incorporation of controllability into exchanger network synthesis, Comput. Chem. Eng. 16(5) (1992) 496-522. [17] Y.H. Yang, J.P. Gong, Y.L. Huang, A simplified system model for rapid evaluation of disturbance propagation through a heat exchanger network, Ind. Eng. Chem. Res. 35(12) (1996) 4550-4558. [18] A.M. Shoaib, A Systematic Approach for the synthesis of highly controllable mass exchange networks, Ind. Eng. Chem. Res. 50(18) (2011) 10872-10877. [19] A.M. Hafizan, S.R.W. Alwi, Z.A. Manan, J.J. Klemeš, Optimal heat exchanger network synthesis with operability and safety considerations, Clean Techn. Environ. Policy 18(8) (2016) 1-20. [20] A.I. Papadopoulos, P. Seferlis, P. Linke, A framework for the integration of solvent and process design with controllability assessment, Chem. Eng. Sci. 159(2017) 154-176. [21] X. Luo, C. Xia, L. Sun, Margin design, online optimization, and control approach of a heat exchanger network with bypasses, Comput. Chem. Eng. 53(53) (2013) 102-121. [22] D. Uztürk, U. Akman, Centralized and decentralized control of retrofit heatexchanger networks, Comput. Chem. Eng. 21(10) (1997) 373-378. [23] L.L. Giovanini, J.L. Marchetti, Low-level flexible-structure control applied to heat exchanger networks, Comput. Chem. Eng. 27(8) (2003) 1129-1142. [24] T.F. Yee, I.E. Grossmann, Z. Kravanja, Simultaneous optimization models for heat integration-Ⅲ. Process and heat exchanger network optimization, Comput. Chem. Eng. 14(11) (1990) 1185-1200. [25] J. Li, J. Du, Z. Zhao, P. Yao, Efficient method for flexibility analysis of large-scale nonconvex heat exchanger networks, Ind. Eng. Chem. Res. 54(43) (2015) 10757-10767. [26] E.H. Bristol, On a new measure of interaction for multivariable process control, IEEE Trans. Autom. Control 11(1) (1966) 133-134. |