[1] R.D. Brock, Prospects and perspectives in mutation breeding, Basic Life Sci. 8(1976) 117-132. [2] M.H. Liang, Y.J. Liang, J.Y. Chai, S.S. Zhou, J.G. Jiang, Reduction of methanol in brewed wine by the use of atmospheric and room-temperature plasma method and the combination optimization of malt with different adjuncts, J. Food Sci. 79(11) (2014) M2308-M2314. [3] X.Y. Wu, Y.Q. Wei, Z.M. Xu, L.P. Liu, Z.L. Tan, S.R. Jia, Evaluation of an ethanoltolerant acetobacter pasteurianus mutant generated by a new atmospheric and room temperature plasma (ARTP) In:Advances In:Applied Biotechnology, Springer, Berlin (2015) 277-286. [4] A. Bhattacharya, P. Leprohon, S. Bigot, P.K. Padmanabhan, A. Mukherjee, G. Roy, H. Gingras, A. Mestdagh, B. Papadopoulou, M. Ouellette, Coupling chemical mutagenesis to next generation sequencing for the identification of drug resistance mutations in Leishmania, Nat. Commun. 10(1) (2019) 1-14. [5] P.D. Sniegowski, P.J. Gerrish, T. Johnson, A. Shaver, The evolution of mutation rates:Separating causes from consequences, BioEssays 22(12) (2000) 1057- 1066. [6] Y.Z. Song, G.H. Li, S.F. Thornton, I.P. Thompson, S.A. Banwart, D.N. Lerner, W.E. Huang, Optimization of bacterial whole cell bioreporters for toxicity assay of environmental samples, Environ. Sci. Technol. 43(20) (2009) 7931-7938. [7] B.N. Ames, J. McCann, E. Yamasaki, Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test, Mutat. Res. 31(6) (1975) 347-364. [8] Y. Oda, S. Nakamura, I. Oki, T. Kato, H. Shinagawa, Evaluation of the new system (umu-test) for the detection of environmental mutagens and carcinogens, Mutat. Res. 147(5) (1985) 219-229. [9] P. Quillardet, O. Huisman, R. D'Ari, M. Hofnung, SOS chromotest, a direct assay of induction of an SOS function in Escherichia coli K-12 to measure genotoxicity, PNAS 79(19) (1982) 5971-5975. [10] K. Yasunaga, A. Kiyonari, T. Oikawa, N. Abe, K. Yoshikawa, Evaluation of the Salmonella umu test with 83 NTP chemicals, Environ. Mol. Mutagen. 44(4) (2004) 329-345. [11] K. Yasunaga, A. Kiyonari, M. Nakagawa, K. Yoshikawa, Investigation into the ability of the Salmonella umu test to detect DNA damage using antitumor drugs, Toxicol. In Vitro 20(5) (2006) 712-728. [12] T. Shimada, S. Nakamura, Cytochrome P-450-mediated activation of procarcinogens and promutagens to DNA-damaging products by measuring expression of umu gene in Salmonella typhimurium TA1535/pSK1002, Biochem. Pharmacol. 36(12) (1987) 1979-1987. [13] S.I. Nakamura, Y. Oda, T. Shimada, I. Oki, K. Sugimoto, SOS-inducing activity of chemical carcinogens and mutagens in Salmonella typhimurium TA1535/pSK1002:examination with 151 chemicals, Mutat. Res. Lett. 192(4) (1987) 239-246. [14] G. Reifferscheid, J. Heil, Validation of the SOS/umu test using test results of 486 chemicals and comparison with the Ames test and carcinogenicity data, Mutat. Res. 369(3-4) (1996) 129-145. [15] F.R. de Gruijl, H.J. van Kranen, L.H.F. Mullenders, UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer, J Photochem Photobiol B:Biol 63(1-3) (2001) 19-27. [16] C. Lu, R.H. Scheuermann, H. Echols, Capacity of RecA protein to bind preferentially to UV lesions and inhibit the editing subunit (epsilon) of DNA polymerase III:A possible mechanism for SOS-induced targeted mutagenesis, PNAS 83(3) (1986) 619-623. [17] Y. Oda, H. Yamazaki, M. Watanabe, T. Nohmi, T. Shimada, Development of high sensitive umu test system:Rapid detection of genotoxicity of promutagenic aromatic amines by Salmonella typhimurium strain NM2009 possessing high Oacetyltransferase activity, Mutat Res Mutagen Relat Subj 334(2) (1995) 145- 156. [18] Y. Oda, K. Funasaka, M. Kitano, A. Nakama, T. Yoshikura, Use of a highthroughput umu-microplate test system for rapid detection of genotoxicity produced by mutagenic carcinogens and airborne particulate matter, Environ. Mol. Mutagen. 43(1) (2004) 10-19. [19] X. Zhang, C. Zhang, Q.Q. Zhou, X.F. Zhang, L.Y. Wang, H.B. Chang, H.P. Li, Y. Oda, X.H. Xing, Quantitative evaluation of DNA damage and mutation rate by atmospheric and room-temperature plasma (ARTP) and conventional mutagenesis, Appl. Microbiol. Biotechnol. 99(13) (2015) 5639-5646. [20] H.P. Li, Z.B. Wang, N. Ge, P.S. Le, H. Wu, Y. Lu, L.Y. Wang, C. Zhang, C.Y. Bao, X.H. Xing, Studies on the physical characteristics of the radio-frequency atmospheric-pressure glow discharge plasmas for the genome mutation of methylosinus trichosporium, IEEE Trans. Plasma Sci. 40(11) (2012) 2853-2860. [21] X. Zhang, X.F. Zhang, H.P. Li, L.Y. Wang, C. Zhang, X.H. Xing, C.Y. Bao, Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool, Appl. Microbiol. Biotechnol. 98(12) (2014) 5387-5396. [22] M.Y. Fang, L.H. Jin, C. Zhang, Y. Tan, P.X. Jiang, N. Ge, H.P. Li, X.H. Xing, Rapid mutation of spirulina platensis by a new mutagenesis system of atmospheric and room temperature plasmas (ARTP) and generation of a mutant library with diverse phenotypes, PLoS ONE 8(10) (2013) e77046. [23] X.F. Hua, J. Wang, Z.J. Wu, H.X. Zhang, H.P. Li, X.H. Xing, Z. Liu, A salt tolerant Enterobacter cloacae mutant for bioaugmentation of petroleum- and saltcontaminated soil, Biochem. Eng. J. 49(2) (2010) 201-206. [24] M. Jiang, Q. Wan, R.M. Liu, L.Y. Liang, X. Chen, M.K. Wu, H.W. Zhang, K.Q. Chen, J.F. Ma, P. Wei, P.K. Ouyang, Succinic acid production from corn stalk hydrolysate in an E. coli mutant generated by atmospheric and roomtemperature plasmas and metabolic evolution strategies, J. Ind. Microbiol. Biotechnol. 41(1) (2014) 115-123. [25] S.D. Liu, Y.N. Wu, T.M. Wang, C. Zhang, X.H. Xing, Maltose utilization as a novel selection strategy for continuous evolution of microbes with enhanced metabolite production, ACS Synth. Biol. 6(12) (2017) 2326-2338. [26] G.P. Nolan, S. Fiering, J.F. Nicolas, L.A. Herzenberg, Fluorescence-activated cell analysis and sorting of viable mammalian cells based on beta-D-galactosidase activity after transduction of Escherichia coli lacZ, PNAS 85(8) (1988) 2603- 2607. [27] S.N. Fiering, M. Roederer, G.P. Nolan, D.R. Micklem, D.R. Parks, L.A. Herzenberg, Improved FACS-Gal:Flow cytometric analysis and sorting of viable eukaryotic cells expressing reporter gene constructs, Cytometry 12(4) (1991) 291-301. [28] M. El Mzibri, H. Guiraud-Dauriac, M. Laget, C. Beudot, M. De Méo, G. Duménil, Use of flow cytometry to detect genotoxins by the Salmonella sulA-test, Biotechnol Tech 11(1997) 467-470. [29] G. Reifferscheid, J. Heil, Y. Oda, R.K. Zahn, A microplate version of the SOS/umutest for rapid detection of genotoxins and genotoxic potentials of environmental samples, Mutat. Res. 253(3) (1991) 215-222. [30] B. Hamer, N. Bihari, G. Reifferscheid, R.K. Zahn, W.E. Müller, R. Batel, Evaluation of the SOS/umu-test post-treatment assay for the detection of genotoxic activities of pure compounds and complex environmental mixtures, Mutat. Res. 466(2) (2000) 161-171. [31] Y. Oda, H. Yamazaki, M. Watanabe, T. Nohmi, T. Shimada, Highly sensitive umu test system for the detection of mutagenic nitroarenes in Salmonella typhimurium NM3009 having high O-acetyltransferase and nitroreductase activities, Environ. Mol. Mutagen. 21(4) (1993) 357-364. [32] M.S. Cooke, M.D. Evans, M. Dizdaroglu, J. Lunec, Oxidative DNA damage:mechanisms, mutation, and disease, FASEB J. 17(10) (2003) 1195-1214. [33] H.X. Chen, F.W. Bai, Z.L. Xiu, Oxidative stress induced in saccharomyces cerevisiae exposed to dielectric barrier discharge plasma in air at atmospheric pressure, IEEE Trans. Plasma Sci. 38(8) (2010) 1885-1891. [34] A. Schutze, J.Y. Jeong, S.E. Babayan, J. Park, G.S. Selwyn, R.F. Hicks, The atmospheric-pressure plasma jet:A review and comparison to other plasma sources, IEEE Trans. Plasma Sci. 26(6) (1998) 1685-1694. [35] G. Li, H.P. Li, L.Y. Wang, S. Wang, H.X. Zhao, W.T. Sun, X.H. Xing, C.Y. Bao, Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium, Appl. Phys. Lett. 92(22) (2008) 221504. [36] L.Y. Wang, H.X. Zhao, D. He, Y.N. Wu, L.H. Jin, G. Li, N. Su, H.P. Li, X.H. Xing, Insights into the molecular-level effects of atmospheric and roomtemperature plasma on mononucleotides and single-stranded homo- and hetero-oligonucleotides, Sci. Rep. 10(1) (2020) 14298. |