中国化学工程学报 ›› 2022, Vol. 41 ›› Issue (1): 73-84.DOI: 10.1016/j.cjche.2021.09.007
Xiaobin Liu1, Zhenguo Gao1, Jingcai Cheng2, Junbo Gong1,3, Jingkang Wang1,3
收稿日期:
2021-06-30
修回日期:
2021-09-04
出版日期:
2022-01-28
发布日期:
2022-02-25
通讯作者:
Junbo Gong,E-mail address:Junbo_gong@tju.edu.cn
基金资助:
Xiaobin Liu1, Zhenguo Gao1, Jingcai Cheng2, Junbo Gong1,3, Jingkang Wang1,3
Received:
2021-06-30
Revised:
2021-09-04
Online:
2022-01-28
Published:
2022-02-25
Contact:
Junbo Gong,E-mail address:Junbo_gong@tju.edu.cn
Supported by:
摘要: With the development of digital products, electric vehicles and energy storage technology, electronic chemicals play an increasingly prominent role in the field of new energy such as lithium-ion batteries. Electronic chemicals have attracted extensive attention in various fields. Characteristics of high-end electronic chemicals are high purity and low impurity content, which requires a very strict separation and purification process. At present, crystallization is a key technology for their separation and purification of electronic chemicals. In this work, the representative fluorine-containing compounds in cathode and anode materials, separator and electrolyte of lithium-ion batteries are introduced. The latest technologies for the preparation and purification of four kinds of fluorine-containing battery chemicals by crystallization technology are reviewed. In addition, the research prospects and suggestions are put forward for the separation of fluorine-containing battery chemicals.
Xiaobin Liu, Zhenguo Gao, Jingcai Cheng, Junbo Gong, Jingkang Wang. Research progress on preparation and purification of fluorine-containing chemicals in lithium-ion batteries[J]. 中国化学工程学报, 2022, 41(1): 73-84.
Xiaobin Liu, Zhenguo Gao, Jingcai Cheng, Junbo Gong, Jingkang Wang. Research progress on preparation and purification of fluorine-containing chemicals in lithium-ion batteries[J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 73-84.
[1] H.X. Wang, Y.G. Feng, W.K. Zhong, China's development status of chemicals for integrated circuit, Mod. Chem. Ind. 38(11)(2018)1-7.(in Chinese) [2] S. Daigle, E. Vogelsberg, B. Lim, I. Butcher, Electronic Chemicals, Wiley-VCH, 2007. [3] S.L. Yellin, D. Hodge, M. Hearon, Getting electronic chemicals to the point of use:as smaller semiconductors are made in larger volumes, ultrapure chemicals and gases will have to be delivered in bulk quantities,(Pristine Processing), Chem. Eng. 109(8)(2002)53-57. [4] P. Cao, T.X. Li, J. Zhu, Preparation technology and present development status of electronic-grade sulphuric acid, Inorg. Chem. Ind. 44(3)(2012)8-11.(in Chinese) [5] C. Delmas, Sodium and sodium-ion batteries:50 years of research, Adv. Energy Mater. 8(17)(2018)1703137. [6] Y. Li, Research on the development status and prospect of electronic chemical industry, Mod. Chem. Ind. 38(01)(2020)18-20. [7] Y.P. Guo, H.Q. Li, T.Y. Zhai, Reviving lithium-metal anodes for next-generation high-energy batteries, Adv. Mater 29(29)(2017)1700007. [8] E. Zhao, O. Borodin, X. Gao, D. Lei, Y. Xiao, X. Ren, W. Fu, A. Magasinski, K. Turcheniuk, G. Yushin, Lithium-iron (III) fluoride battery with double surface protection, Adv. Energy Mater. 8(26)(2018)1800721. [9] N. von Aspern, G.V. Röschenthaler, M. Winter, I. Cekic-Laskovic, Fluorine and lithium:ideal partners for high-performance rechargeable battery electrolytes, Angew. Chem. Int. Ed. Engl. 58(45)(2019)15978-16000. [10] W. Gao, J. Song, H. Cao, X. Lin, X. Zhang, X. Zheng, Y. Zhang, Z. Sun, Selective recovery of valuable metals from spent lithium-ion batteries-process development and kinetics evaluation, J. Clean. Prod. 178(2018)833-845. [11] Y.P. Cheng, Y. Li, S. Jiang, H.Q. Xie, The recovery of lithium cobalt oxides from spent Li-ion batteries and its electrochemical performances, 2016 IEEE International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 2016, pp. 204-208. [12] L.L. Zhang, D. Ma, T. Li, J. Liu, X.K. Ding, Y.H. Huang, X.L. Yang, Polydopaminederived nitrogen-doped carbon-covered Na3V2(PO4)2F3 cathode material for high-performance Na-ion batteries, ACS Appl. Mater. Interfaces 10(43)(2018) 36851-36859. [13] Y. Cai, X. Cao, Z. Luo, G. Fang, F. Liu, J. Zhou, A. Pan, S. Liang, Caging Na3V2(PO4)2F3 microcubes in cross-linked graphene enabling ultrafast sodium storage and long-term cycling, Adv. Sci.(Weinh.)5(9)(2018) 1800680. [14] M.A. Reddy, B. Breitung, C. Wall, S. Trivedi, V.S.K. Chakravadhanula, M. Helen, M. Fichtner, Facile synthesis of carbon-metal fluoride nanocomposites for lithium-ion batteries, Energy Technol. 4(1)(2016)201-211. [15] R.K.B. Gover, P. Burns, A. Bryan, M.Y. Saidi, J.L. Swoyer, J. Barker, LiVPO4F:a new active material for safe lithium-ion batteries, Solid State Ionics 177(26-32)(2006)2635-2638. [16] S. Okada, M. Ueno, Y. Uebou, J.-I. Yamaki, Fluoride phosphate Li2CoPO4F as a high-voltage cathode in Li-ion batteries, J. Power Sources 146(1-2)(2005) 565-569. [17] M. Nagahama, N. Hasegawa, S. Okada, High voltage performances of Li2NiPO4F cathode with dinitrile-based electrolytes, J. Electrochem. Soc. 157 (6)(2010) A748. [18] Y. Li, X.Z. Zhou, Y. Bai, G.H. Chen, Z.H. Wang, H. Li, F. Wu, C. Wu, Building an electronic bridge via Ag decoration to enhance kinetics of iron fluoride cathode in lithium-ion batteries, ACS Appl. Mater. Interfaces 9(23)(2017) 19852-19860. [19] C.M. Costa, M. Kundu, V.F. Cardoso, A.V. Machado, M.M. Silva, S. LancerosMéndez, Silica/poly (vinylidene fluoride) porous composite membranes for lithium-ion battery separators, J. Membr. Sci. 564(2018)842-851. [20] B. Ameduri, From vinylidene fluoride (VDF) to the applications of VDFcontaining polymers and copolymers:recent developments and future trends, Chem. Rev. 109(12)(2009)6632-6686. [21] M.J. Koh, H.Y. Hwang, D.J. Kim, H.J. Kim, Y.T. Hong, S.Y. Nam, Preparation and characterization of porous PVdF-HFP/clay nanocomposite membranes, J. Mater. Sci. Technol. 26(7)(2010)633-638. [22] H.S. Jeong, S.C. Hong, S.Y. Lee, Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/poly (vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries, J. Membr. Sci. 364(1-2)(2010)177-182. [23] Y. Kano, N. Sato, S. Akiyama, Controlling of pressure sensitive adhesive properties by blending poly (vinylidene fluoride-co-hexafluoro acetone) into poly (ethylacrylate) adhesive, Polym. J. 23(12)(1991)1489-1497. [24] L. Gao, Synthesis and research of fluorinated acrylate adhesive for lithium-ion battery Ph. D. Thesis, Donghua Univ., China, 2015. [25] M. Kato, H. Sano, T. Kiyobayashi, N. Takeichi, M. Yao, Conductive polymer binder and separator for high energy density lithium organic battery, MRS Commun. 9(3)(2019)979-984. [26] C.H. Feng, Preparation and properties of fluorine-containing separator materials for lithium ion batteries, Ph. D. Thesis, Jinan Univ., China, 2014. [27] R.E. Sousa, M. Kundu, A. Gören, M.M. Silva, L.F. Liu, C.M. Costa, S. LancerosMendez, Poly (vinylidene fluoride-co-chlorotrifluoroethylene)(PVDF-CTFE) lithium-ion battery separator membranes prepared by phase inversion, RSC Adv. 5(110)(2015)90428-90436. [28] J. Zhao, L. Liao, F.F. Shi, T. Lei, G.X. Chen, A. Pei, J. Sun, K. Yan, G.M. Zhou, J. Xie, C. Liu, Y.Z. Li, Z. Liang, Z.N. Bao, Y. Cui, Surface fluorination of reactive battery anode materials for enhanced stability, J. Am. Chem. Soc. 139(33)(2017) 11550-11558. [29] F. Liu, N.A. Hashim, Y. Liu, M.R.M. Abed, K. Li, Progress in the production and modification of PVDF membranes, J. Membr. Sci. 375(1-2)(2011)1-27. [30] C.-N. Wei, C. Karuppiah, C.-C. Yang, J.-Y. Shih, S.J. Lue, Bifunctional perovskite electrocatalyst and PVDF/PET/PVDF separator integrated split test cell for high performance Li-O2 battery, J. Phys. Chem. Solids 133(2019)67-78. [31] D.R. Gallus, R. Wagner, S. Wiemers-Meyer, M. Winter, I. Cekic-Laskovic, New insights into the structure-property relationship of high-voltage electrolyte components for lithium-ion batteries using the pKa value, Electrochim. Acta 184(2015)410-416. [32] Y. Qian, P. Niehoff, M. Börner, M. Grützke, X. Mönnighoff, P. Behrends, S. Nowak, M. Winter, F.M. Schappacher, Influence of electrolyte additives on the cathode electrolyte interphase (CEI) formation on LiNi1/3Mn1/3Co1/3O2 in half cells with Li metal counter electrode, J. Power Sources 329(2016)31-40. [33] B. Li, Y. Wang, H. Lin, X. Wang, M. Xu, Y. Wang, L. Xing, W. Li, Performance improvement of phenyl acetate as propylene carbonate-based electrolyte additive for lithium ion battery by fluorine-substituting, J. Power Sources 267 (2014)182-187. [34] K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev. 104(10)(2004)4303-4418. [35] K. Xu, Electrolytes and interphases in Li-ion batteries and beyond, Chem. Rev. 114(23)(2014)11503-11618. [36] X. Fan, L. Chen, X. Ji, T. Deng, S. Hou, J. Chen, J. Zheng, F. Wang, J. Jiang, K. Xu, C. Wang, Highly fluorinated interphases enable high-voltage Li-metal batteries, Chem 4(1)(2018)174-185. [37] T. Placke, O. Fromm, S.F. Lux, P. Bieker, S. Rothermel, H.-W. Meyer, S. Passerini, M. Winter, Reversible intercalation of bis (trifluoromethanesulfonyl) imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells, J. Electrochem. Soc. 159(11) (2012) A1755-A1765. [38] T. Achiha, T. Nakajima, Y. Ohzawa, M. Koh, A. Yamauchi, M. Kagawa, H. Aoyama, Electrochemical behavior of nonflammable organo-fluorine compounds for lithium ion batteries, J. Electrochem. Soc 156(6)(2009) A483. [39] N. Azimi, Z. Xue, I. Bloom, M.L. Gordin, D. Wang, T. Daniel, C. Takoudis, Z. Zhang, Understanding the effect of a fluorinated ether on the performance of lithium-sulfur batteries, ACS Appl. Mater. Interfaces 7(17)(2015)9169-9177. [40] S. Pizzini, M. Acciarri, S. Binetti, From electronic grade to solar grade silicon: Chances and challenges in photovoltaics, Phys. Status Solidi A Appl. Mater. Sci. 202(15)(2005)2928-2942. [41] S.S. Zhang, K. Xu, T.R. Jow, Enhanced performance of Li-ion cell with LiBF4-PC based electrolyte by addition of small amount of LiBOB, J. Power Sources 156 (2)(2006)629-633. [42] J. Kasnatscheew, R.W. Schmitz, R. Wagner, M. Winter, R. Schmitz, Fluoroethylene carbonate as an additive for c-butyrolactone based electrolytes, J. Electrochem. Soc. 160(9)(2013) A1369-A1374. [43] X. Ren, Y. Zhang, M.H. Engelhard, Q. Li, J.-G. Zhang, W. Xu, Guided lithium metal deposition and improved lithium coulombic efficiency through synergistic effects of LiAsF6 and cyclic carbonate additives, ACS Energy Lett. 3(1)(2018)14-19. [44] G.A. Elia, J.-B. Park, Y.-K. Sun, B. Scrosati, J. Hassoun, Role of the lithium salt in the performance of lithium-oxygen batteries:a comparative study, ChemElectroChem 1(1)(2014)47-50. [45] B.S. Parimalam, B.L. Lucht, Reduction reactions of electrolyte salts for lithium ion batteries:LiPF6, LiBF4, LiDFOB, LiBOB, and LiTFSI, J. Electrochem. Soc 165 (2)(2018) A251-A255. [46] L. Zheng, H. Zhang, P. Cheng, Q. Ma, J. Liu, J. Nie, W. Feng, Z. Zhou, Li[(FSO2)n(C4F9SO2)N] versus LiPF6 for graphite/LiCoO2 lithium-ion cells at both room and elevated temperatures:a comprehensive understanding with chemical, electrochemical and XPS analysis, Electrochim. Acta 196(2016)169-188. [47] R. Miao, J. Yang, X. Feng, H. Jia, J. Wang, Y. Nuli, Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility, J. Power Sources 271(2014)291-297. [48] Z. Zhang, L. Hu, H. Wu, W. Weng, M. Koh, P.C. Redfern, L.A. Curtiss, K. Amine, Fluorinated electrolytes for 5 v lithium-ion battery chemistry, Energy Environ. Sci 6(6)(2013)1806. [49] D.B. Shah, K.R. Olson, A. Karny, S.J. Mecham, J.M. DeSimone, N.P. Balsara, Effect of anion size on conductivity and transference number of perfluoroether electrolytes with lithium salts, J. Electrochem. Soc. 164(14) (2017) A3511-A3517. [50] Q. Ma, Z. Fang, P. Liu, J. Ma, X. Qi, W. Feng, J. Nie, Y.-S. Hu, H. Li, X. Huang, L. Chen, Z. Zhou, Improved cycling stability of lithium-metal anode with concentrated electrolytes based on lithium (fluorosulfonyl) (trifluoromethanesulfonyl) imide, ChemElectroChem 3(4)(2016)531-536. [51] C. Liao, K.S. Han, L. Baggetto, D.A. Hillesheim, R. Custelcean, E.-S. Lee, B. Guo, Z. Bi, D.-e. Jiang, G.M. Veith, E.W. Hagaman, G.M. Brown, C. Bridges, M.P. Paranthaman, A. Manthiram, S. Dai, X.-G. Sun, Synthesis and characterization of lithium bis (fluoromalonato) borate for lithium-ion battery applications, Adv. Energy Mater. 4(6)(2014)1301368. [52] J. Arai, A. Matsuo, T. Fujisaki, K. Ozawa, A novel high temperature stable lithium salt (Li2B12F12) for lithium ion batteries, J. Power Sources 193(2) (2009)851-854. [53] Y. Ein-Eli, S.R. Thomas, R. Chadha, T.J. Blakley, V.R. Koch, Li-ion battery electrolyte formulated for low-temperature applications, J. Electrochem. Soc. 144(3)(1997)823-829. [54] L.A. Dominey, Methide salts, formulations, electrolytes and batteries formed therefrom, U.S. Pat. 05273840, 1993. [55] C.W. Walker, J.D. Cox, M. Salomon, Conductivity and electrochemical stability of electrolytes containing organic solvent mixtures with lithium tris (trifluoromethanesulfonyl) methide, J. Electrochem. Soc. 143(4)(1996) L80-L82. [56] L. Feng, H. Cui, A new solid-state electrolyte:Rubbery ‘polymer-in-salt’ containing LiN (CF3SO2)2, J. Power Sources 63(1)(1996)145-148. [57] I. Belharouak, H. Tsukamoto, K. Amine, LiNi0.5Co0.5O2 as a long-lived positive active material for lithium-ion batteries, J. Power Sources 119-121 (2003)175-177. [58] C. Daniel, Materials and processing for lithium-ion batteries, JOM 60(9) (2008)43-48. [59] G. Yan, X. Li, Z. Wang, H. Guo, W. Peng, Q. Hu, J. Wang, Fluorinated solvents for high-voltage electrolyte in lithium-ion battery, J. Solid State Electrochem. 21(6)(2017)1589-1597. [60] G.M. Veith, M. Doucet, R.L. Sacci, B. Vacaliuc, J.K. Baldwin, J.F. Browning, Determination of the solid electrolyte interphase structure grown on a silicon electrode using a fluoroethylene carbonate additive, Sci. Rep. 7(1)(2017) 6326. [61] N. Nambu, Y. Sasaki, Physical and electrolytic properties of monofluorinated ethyl acetates and their application to lithium secondary batteries, Open J. Met. 05(01)(2015)1-9. [62] P. Shi, S. Fang, D. Luo, L. Yang, S.-I. Hirano, A safe electrolyte based on propylene carbonate and non-flammable hydrofluoroether for highperformance lithium ion batteries, J. Electrochem. Soc. 164(9)(2017) A1991-A1999, https://doi.org/10.1149/2.1181709jes. [63] R. Schmitz, R. Schmitz, R. Müller, O. Kazakova, N. Kalinovich, G.-V. Röschenthaler, M. Winter, S. Passerini, A. Lex-Balducci, Methyl tetrafluoro-2-(methoxy) propionate as co-solvent for propylene carbonate-based electrolytes for lithium-ion batteries, J. Power Sources 205(2012)408-413. [64] P.R. Raimann, A. Trifonova, K.-C. Möller, J.O. Besenhard, M. Winter, M.R. Wagner, Dilatometric and mass spectrometric investigations on lithium ion battery anode materials, Anal. Bioanal. Chem. 379(2)(2004)272-276. [65] M.R. Wagner, J.H. Albering, K.-C. Moeller, J.O. Besenhard, M. Winter, XRD evidence for the electrochemical formation of Li+(PC)yCn- in PC-based electrolytes, Electrochem. Commun. 7(9)(2005)947-952. [66] C.-C. Su, M. He, P.C. Redfern, L.A. Curtiss, I.A. Shkrob, Z. Zhang, Oxidatively stable fluorinated sulfone electrolytes for high voltage high energy lithiumion batteries, Energy Environ. Sci. 10(4)(2017)900-904. [67] Y. Horowitz, H.-L. Han, W.T. Ralston, J.R. de Araujo, E. Kreidler, C. Brooks, G.A. Somorjai, Fluorinated end-groups in electrolytes induce ordered electrolyte/ anode interface even at open-circuit potential as revealed by sum frequency generation vibrational spectroscopy, Adv. Energy Mater. 7(17)(2017) 1602060. [68] S. Hess, M. Wohlfahrt-Mehrens, M. Wachtler, Flammability of Li-ion battery electrolytes:flash point and self-extinguishing time measurements, J. Electrochem. Soc. 162(2)(2015) A3084-A3097. [69] J. Yun, L. Zhang, Q. Qu, H. Liu, X. Zhang, M. Shen, H. Zheng, A binary cyclic carbonates-based electrolyte containing propylene carbonate and trifluoropropylene carbonate for 5 V lithium-ion batteries, Electrochim. Acta 167(2015)151-159. [70] J. Kalhoff, D. Bresser, M. Bolloli, F. Alloin, J.-Y. Sanchez, S. Passerini, Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by using linear fluorinated carbonates as (Co) solvent, ChemSusChem 7(10)(2014)2939-2946. [71] K. Xu, S. Zhang, J.L. Allen, T.R. Jow, Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate, J. Electrochem. Soc. 149(8)(2002) A1079. [72] P. Murmann, N. von Aspern, P. Janssen, N. Kalinovich, M. Shevchuk, G.-V. Röschenthaler, M. Winter, I. Cekic-Laskovic, Influence of the fluorination degree of organophosphates on flammability and electrochemical performance in lithium ion batteries, J. Electrochem. Soc 165(9)(2018) A1935-A1942. [73] P. Murmann, X. Mönnighoff, N. von Aspern, P. Janssen, N. Kalinovich, M. Shevchuk, O. Kazakova, G.-V. Röschenthaler, I. Cekic-Laskovic, M. Winter, Influence of the fluorination degree of organophosphates on flammability and electrochemical performance in lithium ion batteries:studies on fluorinated compounds deriving from triethyl phosphate, J. Electrochem. Soc. 163(5) (2016) A751-A757. [74] N. von Aspern, S. Röser, B. Rezaei Rad, P. Murmann, B. Streipert, X. Mönnighoff, S.D. Tillmann, M. Shevchuk, O. Stubbmann-Kazakova, G.-V. Röschenthaler, S. Nowak, M. Winter, I. Cekic-Laskovic, Phosphorus additives for improving high voltage stability and safety of lithium ion batteries, J. Fluor. Chem. 198(2017)24-33. [75] J. Xia, R. Petibon, A. Xiao, W.M. Lamanna, J.R. Dahn, Some fluorinated carbonates as electrolyte additives for Li (Ni0.4Mn0.4Co0.2)O2/graphite pouch cells, J. Electrochem. Soc. 163(8)(2016) A1637-A1645. [76] J.P. Yang, L. Wang, P. Zhao, Y.M. Shang, J.J. Li, X.M. He, Research progress of flame retardant additives for lithium ion battery electrolyte, Adv. Mater. Ind. 4 (2013)64-69. [77] C. Buhrmester, J. Chen, L. Moshurchak, J.W. Jiang, R.L. Wang, J.R. Dahn, Studies of aromatic redox shuttle additives for LiFePO[sub 4]-based Li-ion cells, J. Electrochem. Soc. 152(12)(2005) A2390-A2399. [78] C.Y. Ren, H. Lu, M. Jia, Z.A. Zhang, Y.Q. Lai, J. Li, Application of 1, 2-dimethoxy-4-nitro-benzene and 1, 4-dimethoxy-2-nitro-benzene as overcharge protection additives in lithium-ion batteries, Acta Phys.-Chim. Sin. 28(9) (2012)2091-2096. [79] M. Nie, J. Xia, J.R. Dahn, Development of pyridine-boron trifluoride electrolyte additives for lithium-ion batteries, J. Electrochem. Soc. 162(7)(2015) A1186-A1195. [80] Y.-M. Lee, K.-M. Nam, E.-H. Hwang, Y.-G. Kwon, D.-H. Kang, S.-S. Kim, S.-W. Song, Interfacial origin of performance improvement and fade for 4.6 V LiNi0.5Co0.2Mn0.3O2 battery cathodes, J. Phys. Chem. C 118(20)(2014)10631-10639. [81] L. Xing, W. Li, C. Wang, F. Gu, M. Xu, C. Tan, J. Yi, Theoretical investigations on oxidative stability of solvents and oxidative decomposition mechanism of ethylene carbonate for lithium ion battery use, J. Phys. Chem. B 113(52) (2009)16596-16602. [82] M.Q. Xu, L.D. Xing, W.S. Li, X.X. Zuo, D. Shu, G.L. Li, Application of cyclohexyl benzene as electrolyte additive for overcharge protection of lithium ion battery, J. Power Sources 184(2)(2008)427-431. [83] W. Weng, Z. Zhang, J.A. Schlueter, P.C. Redfern, L.A. Curtiss, K. Amine, Improved synthesis of a highly fluorinated boronic ester as dual functional additive for lithium-ion batteries, J. Power Sources 196(4)(2011)2171-2178. [84] K. Abe, H. Yoshitake, T. Kitakura, T. Hattori, H. Wang, M. Yoshio, Additivescontaining functional electrolytes for suppressing electrolyte decomposition in lithium-ion batteries, Electrochim. Acta 49(26)(2004)4613-4622. [85] M. Xu, Y. Liang, B. Li, L. Xing, Y. Wang, W. Li, Tris (pentafluorophenyl) phosphine:a dual functionality additive for flame-retarding and sacrificial oxidation on LiMn2O4 for lithium ion battery, Mater. Chem. Phys. 143(3) (2014)1048-1054. [86] J.-G. Han, J.B. Lee, A. Cha, T.K. Lee, W. Cho, S. Chae, S.J. Kang, S.K. Kwak, J. Cho, S.Y. Hong, N.-S. Choi, Unsymmetrical fluorinated malonatoborate as an amphoteric additive for high-energy-density lithium-ion batteries, Energy Environ. Sci. 11(6)(2018)1552-1562. [87] W. Cao, Application of fluorinated compounds in lithium ion batteries, Organo-fluorine Ind.(2)(2019)23-27. [88] L.D. Ellis, I.G. Hill, K.L. Gering, J.R. Dahn, Synergistic effect of LiPF6and LiBF4as electrolyte salts in lithium-ion cells, J. Electrochem. Soc 164(12)(2017) A2426-A2433. [89] S.U. Yoon, H. Kim, H.-J. Jin, Y.S. Yun, Effects of fluoroethylene carbonateinduced solid-electrolyte-interface layers on carbon-based anode materials for potassium ion batteries, Appl. Surf. Sci. 547(2021)149193. [90] E. Markevich, G. Salitra, A. Rosenman, Y. Talyosef, F. Chesneau, D. Aurbach, Fluoroethylene carbonate as an important component in organic carbonate electrolyte solutions for lithium sulfur batteries, Electrochem. Commun. 60 (2015)42-46. [91] J. Xu, W.H. Yao, Y.W. Yao, Z.C. Wang, Y. Yang, Effect of fluoroethylene carbonate additive on the performance of lithium ion battery, Acta Phys.-Chimica Sin. 25(2)(2009)201-206.(in Chinese) [92] Y.L. Zhu, Synthesis of polyvinylidene fluoride, China Plast. Ind. 33(S1)(2005) 67-69.(in Chinese) [93] H. Yang, G.V. Zhuang, P.N. Ross, Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6, J. Power Sources 161(1)(2006)573-579. [94] E. Zinigrad, L. Larush-Asraf, J.S. Gnanaraj, M. Sprecher, D. Aurbach, On the thermal stability of LiPF6, Thermochim. Acta 438(1-2)(2005)184-191. [95] Y.F. Zhao, H.T. Zhang, Preparation process of high-quality LiPF6 crystals, Chin. J. Process Eng. 18(6)(2018)1160-1166. [96] Y.S. Liu, Study on the preparation of six fluorine lithium phosphate, Low Temp. Spec. Gases 33(2)(2015)20-24. [97] J.H. Simmons, Practice of fluorine science in lithium hexafluorophosphate, J. Fluorine. Chem. 9(1)(1950)154-165. [98] P.J. Yang, Y.Z. Wang, X.Z. Wang, H.S. Chen, H.J. Zheng, Research progress on synthesis technology of high quality lithium hexafluorophosphate, Zhejiang Chem. Ind. 51(10)(2020)8-12. [99] A.A. Smagin, V.A. Matyukha, V.P. Korobtsev, Application of thermogravimetric studies for optimization of lithium hexafluorophosphate production, J. Power Sources 68(2)(1997)326-327. [100] R.D.W. Kemmitt, D.R. Russell, D.W.A. Sharp, 844. The structural chemistry of complex fluorides of general formula AIBVF6, J. Chem. Soc.(1963)4408. [101] J.G. Zhang, Y. Wang, Progress in preparation of lithium hexafluorophosphate electrolyte and analysis on difficulties thereof, Inorg. Chem. Ind. 44(6)(2012) 57-60. [102] J.C. Chen, J.Q. Li, S. Zheng, Y.L. Guo, Progress in preparation of electrolyte LiPF6, Chin. J. Power Sources 43(11)(2019)1891-1893. [103] B. Ning, J.X. Zou, Research progress on preparation of lithium hexafluorophosphate, Guizhou Chem. Ind. 36(5)(2011)26-28. [104] W.H. Xu, A novel technology on preparation of batterty-grade LiPF6 by the method of the complex dissociation, Ph. D. Thesis, Nanchang:Nanchang University, China,(2015). [105] X.L. Cui, S.Y. Li, Z.M. Wu, Y. Zhou, H.M. Luo, Thermal decomposition kinetics of LiBF4, J. Jilin Univ., Sci. Ed. 47(6)(2009)1323-1327. [106] Y.H. Ren, B.R. Wu, C.W. Yang, F. Wu, F.B. Chen, Review of new lithium slats of electrolyte for Li-ion batteries, Chin. J. Power Sources 35(9)(2011)1172-1174. [107] Z.M. Wang, X.X. He, D.Q. Sun, Practical Infrared Spectrometry, Petrol Chemical Industry Press, Beijing, 1978. [108] M. Xin, W.H. Hu, Group Theory and chemistry, High Education Press, Beijing, 1984. [109] Y.S. Ning, X.F. Guo, H. Xu, Q.Y. Zhao, X.H. Sun, A preparation method of anhydrous high purity lithium tetrafluoroborate, China Pat. 101863489 (2010). [110] J.L. Sang, Q.Y. Zhao, D.F. Liu, Preparation and characterization of LiBF4 electrolyte of lithium ion batteries, Inorg. Chem. Ind. 47(07)(2015)75-78. [111] J. Wang, H.Y. Song, Preparation method of lithium tetrafluoroborate for lithium ion battery, Inorg. Chem. Ind. 20(10)(2013)9-11. [112] Y. Zhou, X.Y. Zhang, X.Y. Deng, Z.M. Wu, G.J. Cao, Preparation of anhydrous lithium tetrafluoroborate, China Pat., 100593515C,(2010). [113] S. Angaiah, V. Thiagarajan, G. Ramaiyer, Process for the preparation of LiBF4, US Pat., 6623717,(2003). [114] H. Friedrich, J. Simon, Method for producing highly pure LiBF4, US Pat., 6537512,(2003). [115] V. Etacheri, O. Haik, Y. Goffer, G.A. Roberts, I.C. Stefan, R. Fasching, D. Aurbach, Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes, Langmuir 28(1)(2012)965-976. [116] B.R. Wu, Y.H. Ren, D.B. Mu, X.J. Liu, J.C. Zhao, F. Wu, Enhanced electrochemical performance of LiFePO4 cathode with the addition of fluoroethylene carbonate in electrolyte, J. Solid State Electrochem. 17(3)(2013)811-816. [117] M. Kobayashi, T. Inokuchi, S. Yamashita, Production of 4-fluoro-1,3-dioxolan-2-one, Japan Pat., 2000309583,(2000). [118] B. Olaf, Z. Dirk, P. Katya, Preparation of 4-fluoro-1,3-dioxocene-2-one, China Pat. 200480003940,(2004). [119] J.H. Simons, Fluorine chemistry, Academic Press, America, 1950. [120] Z.J. Yamauchi, M.J. Tanaka, M.T. Gao, Manufacturing method of 4-fluoro-1,3-dioxolane-2-one, China Pat, 200880024559.0,(2008). [121] R.J. Li, X.J. Wang, Z.L. Chen, R.Y. Ding, L.P. Fang, A synthetic method of vinyl fluorocarbonate, China Pat. 200810071778.6,(2008). [122] M.X. Wu, G.H. Fang, Y. Pan, J.Y. Huang, B.Q. Lu, A method for synthesis of vinyl fluorocarbonate by phase transfer catalysis, China Pat. 200910111559, (2009). [123] G.R. Xu, D. Liu, S.K. Yao, G.H. Liu, Preparation method of fluoroethylene carbonate, China Pat. 201310019550.3,(2013). [124] J.L. Shen, X.L. Zhang, Z.Y. Yang, W.F. Li, L.Y. Zhang, Methods of removing acid and water from fluoroethylene carbonate, China Pat. 200910213448.0, (2009). [125] M.T. Gao, Z.J. Yamauchi, F.M. Gu, Manufacturing method of 4-fluorine-1,3-dioxygentyl-2-one, China Pat, 200910118346.0,(2009). [126] T.T. Wang, J.M. Herbert, A.M. Glass, The applications of ferroelectric polymers, Blackie, Glasgow, 1988. [127] S.X. Song, S. Xia, Y. Liu, X. Lv, S.L. Sun, Effect of Na+MMT-ionic liquid synergy on electroactive, mechanical, dielectric and energy storage properties of transparent PVDF-based nanocomposites, Chem. Eng. J. 384(2020)123365. [128] Y. Ding, P. Zhang, Z. Long, Y. Jiang, F. Xu, W. Di, The ionic conductivity and mechanical property of electrospun P (VdF-HFP)/PMMA membranes for lithium ion batteries, J. Membr. Sci. 329(1-2)(2009)56-59. [129] S.W. Choi, S.M. Jo, W.S. Lee, Y.-R. Kim, An electrospun poly (vinylidene fluoride) nanofibrous membrane and its battery applications, Adv. Mater. 15 (23)(2003)2027-2032. [130] N. Wang, Y. NuLi, S. Su, J. Yang, J. Wang, Effects of binders on the electrochemical performance of rechargeable magnesium batteries, J. Power Sources 341(2017)219-229. [131] M. Yoo, C.W. Frank, S. Mori, S. Yamaguchi, Effect of poly (vinylidene fluoride) binder crystallinity and graphite structure on the mechanical strength of the composite anode in a lithium ion battery, Polymer 44(15)(2003)4197-4204. [132] H.L. Wang, W.H. Liu, X.F. Li, N. Tang, J. Wang, A preparation method of polyvinylidene fluoride for lithium battery adhesive, China Pat., 104530276B, (2017). [133] H.J. Yang, Q.F. Chen, X.Z. Wan, B.F. Zheng, Z.K. Peng, X.C. Deng, A PVDF surface modified core-shell structure lithium battery binder and its preparation method and application, China Pat. 202010496003(4)(2017). [134] Y.F. Zhao, Study on green preparation process and application of high quality LiPF6, Ph. D. Thesis, Univ. of Chinese Academy of Sciences, Beijing,(2018). [135] J. Liu, Y. Cai, C. Xiao, H. Zhang, F. Lv, C. Luo, Z.H. Hu, Y.T. Cao, B. Cao, L. Yu, Synthesis of LiPF6 using CaF2 as the fluorinating agent directly:an advanced industrial production process fully harmonious to the environments, Ind. Eng. Chem. Res. 58(44)(2019)20491-20494. [136] J.W. Liu, X.H. Li, Z.X. Wang, H.J. Guo, W.J. Peng, Y.H. Zhang, Q.Y. Hu, Preparation and characterization of lithium hexafluorophosphate for lithiumion battery electrolyte, Trans. Nonferrous Met. Soc. China 20(2)(2010)344-348. [137] M.M. Tian, Preparation lithium hexafluorophate of battery level with complexometry and studies on electrochemical performance, Thesis, Nanchang Univ, Nanchang, 2013. [138] D.M. Zheng, H.X. Guo, W.H. Xu, Q.X. Chen, Complex dissociation synthesis of batterty-grade LiPF6, Chem. Res. Appl. 28(06)(2016)867-870. [139] M. Huang, B. Huang, Purification of lithium hexafluorophosphate, China Pat. (2016)103539168. [140] J.B. Li, Y.J. Wang, C.S. Yan, K. Li, Y.Y. Li, X. Wang, J. Li, B.J. Dong, Purification of lithium hexafluorophosphate, China Pat.,107055574,(2017). [141] Y.C. Mo, Y.Z. Li, C.K. Xu, L.Z. Mao, J.Z. Jin, Lithium hexafluorophosphate and its crystallization and preparation method, lithium-ion battery electrolyte and lithium-ion battery, China Pat., 112340754,(2017). [142] L.L. Missoni, F. Marchini, M. del Pozo, E.J. Calvo, A LiMn2O4-polypyrrole system for the extraction of LiCl from natural brine, J. Electrochem. Soc. 163 (9)(2016) A1898-A1902. [143] J. Lee, S.-H. Yu, C. Kim, Y.-E. Sung, J. Yoon, Highly selective lithium recovery from brine using a k-MnO2-Ag battery, Phys. Chem. Chem. Phys. 15(20)(2013) 7690. [144] A. Zhao, J. Liu, X. Ai, H. Yang, Y. Cao, Highly selective and pollution-free electrochemical extraction of lithium by a polyaniline/LixMn2O4 cell, ChemSusChem 12(7)(2019)1361-1367. [145] M.Y. Hou, L. Chen, Z.W. Guo, X.L. Dong, Y.G. Wang, Y.Y. Xia, A clean and membrane-free chlor-alkali process with decoupled Cl2 and H2/NaOH production, Nat. Commun. 9(1)(2018)438. [146] A. Zhao, F.P. Zhong, X.M. Feng, W.H. Chen, X.P. Ai, H.X. Yang, Y.L. Cao, A membrane-free and energy-efficient three-step chlor-alkali electrolysis with higher-purity NaOH production, ACS Appl. Mater. Interfaces 11(48)(2019) 45126-45132. [147] Y.Y. Ma, X.L. Dong, Y.G. Wang, Y.Y. Xia, Decoupling hydrogen and oxygen production in acidic water electrolysis using a polytriphenylamine-based battery electrode, Angew. Chem. Int. Ed. Engl. 57(11)(2018)2904-2908. [148] A. Zhao, F.P. Zhong, X.M. Feng, W.H. Chen, X.P. Ai, H.X. Yang, Y.L. Cao, Efficient and facile electrochemical process for the production of high-quality lithium hexafluorophosphate electrolyte, ACS Appl. Mater. Interfaces 12(29)(2020) 32771-32777. [149] J.W. Liu, X.H. Li, Z.X. Wang, H.J. Guo, Q.Y. Hu, LiBF4 electrolyte for lithium-ion battery:preparation and characterization, Chin. J. Inorg. Chem. 25(1)(2009) 31-36.(in Chinese) [150] Y. Mochida, T. Tateno, K. Momota, Synthesis of anhydrous lithium tetrafluoroborate, Japan Pat. 56145113,(1981). [151] D.N. Zhao, D. Lei, P. Wang, S.Y. Li, H.M. Zhang, X.L. Cui, Synthesis, waterremoving method and influences of trace water for LiBF4, ChemistrySelect 4 (19)(2019)5853-5859. [152] Chan NaDu, Preparation of lithium fluoroborate, Korean Pat. 20000519230, (2000). [153] Q.Q. Lan, D.M. Zheng, J.H. Peng, Optimization of the preparation process and research of electrochemical performance of battery grade lithium tetrafluoroborate, New Chem. Mater. 44(9)(2016)237-239.(in Chinese) [154] S. Angaiah, V. Thiagarajan, G. Ramaiyer, The preparation method of lithium tetrafluoroborate, US, Pat., 6537512,(2003). [155] J.L. Sang, K. Wang, D.F. Liu, Preparation research of lithium tetrafluoroborate, Inorg. Chem. Ind. 50(5)(2018)30-32.(in Chinese) [156] B.Q. Yu, A manufacturing method of battery grade lithium tetrafluoroborate, Tianjin Sci. Technol. 45(6)(2018)69-71.(in Chinese) [157] H.Z. Niu, An industrial production method of electronic grade vinyl fluorocarbonate, China Pat. 106916137,(2017). [158] Y.Q. Weng, W.J. Xie, G.X. Yue, W.X. Xin, X.Z. Chen, A preparation method of high purity vinyl fluorocarbonate, China Pat. 106854195,(2019). [159] X.C. Wang, X.L. Wang, Preparation method and application of fluorinated vinyl carbonate, China Pat. 110981849,(2020). [160] H.J. Hou, Xue, X.J. H.H. Yu, H.X. Liu, T.F. Si, M.X. Yang, F.F. Xue, C.J. Luo, Y.F. Li, H.Q. Liu, Y. Yu, Z.P. Zhang, Preparation method for high purity fluoroethylene carbonate, WO Pat., 184379,(2018). [161] G. Lin, Y.J. Wu, B.P. Wan, X. Wang, H. Yu, C.Y. Wang, J. Hu, A preparation method of fluoroethylene carbonate, China Pat. 112409320,(2020). [162] W.F. Shu, X.F. Jia, M.F. Qiu, X.F. Zhang, H.W. Wang, Y.L. Zhu, A method for preparing electronic grade vinyl fluorocarbonate by fractional crystallization, China Pat. 10878078,(2020). [163] X.B. Jiang, M. Li, G.H. He, J.K. Wang, Research progress and model development of crystal layer growth and impurity distribution in layer melt crystallization:a review, Ind. Eng. Chem. Res. 53(34)(2014)13211-13227. [164] S.Z. Jia, B. Jing, W. Hong, Z.G. Gao, J.B. Gong, J.K. Wang, S. Rohani, Purification of 2, 4-dinitrochlorobenzene using layer melt crystallization:Model and experiment, Sep. Purif. Technol. 270(2021)118806. [165] A.M. Chen, J.W. Zhu, B. Wu, K. Chen, L.J. Ji, Y.Y. Wu, Purification of wet-process phosphoric acid by melt suspension crystallization, Chem. Eng. 40(8)(2012) 52-56. [166] B.W. Montag, M.A. Reichenberger, N. Edwards, P.B. Ugorowski, M. Sunder, J. Weeks, D.S. McGregor, Static sublimation purification process and characterization of LiZnP semiconductor material, J. Cryst. Growth 419 (2015)133-137. [167] V.A. Fedorov, A.A. Gasanov, N.A. Potolokov, T.K. Menshchikova, M.N. Brekhovskikh, Ultrapurification of arsenic by crystallization, Inorg. Mater. 54(10)(2018)1027-1032. [168] V.A. Fedorov, N.A. Potolokov, T.K. Menshchikova, M.N. Brekhovskikh, Physicochemical and methodological approaches to the development of integrated processes for the preparation of high-purity substances, Inorg. Mater. 55(12)(2019)1264-1272. [169] S. Karki, P. Aryal, O. Gileva, H.J. Kim, Y. Kim, D.Y. Lee, H.K. Park, K. Shin, Reduction of radioactive elements in molybdenum trioxide powder by sublimation method and its technical performance, J. Instrum. 14(11)(2019) T11002. [170] D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem. 7(2015)19-29. [171] Y. Dong, S. Li, K. Zhao, C. Han, W. Chen, B. Wang, L. Wang, B. Xu, Q. Wei, L. Zhang, Xu Xu, L. Mai, Hierarchical zigzag Na1.25V3O8 nanowires with topotactically encoded superior performance for sodium-ion battery cathodes, Energ. Environ. Sci. 8(4)(2015)1267-1275. [172] Y.S. Cai, X.X. Cao, Z.G. Luo, G.Z. Fang, F. Liu, J. Zhou, A.Q. Pan, S.Q. Liang, Caging Na3V2(PO4)2F3 microcubes in cross-linked graphene enabling ultrafast sodium storage and long-term cycling, Adv. Sci.(Weinh.)5(9)(2018) 1800680. [173] Z.Y. Gu, J.Z. Guo, Z.H. Sun, X.X. Zhao, W.H. Li, X. Yang, H.J. Liang, C.D. Zhao, X.L. Wu, Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries, Sci. Bull. 65 (9)(2020)702-710. |
[1] | Xia Miao, Xiaofan Pang, Shiyu Li, Haoguang Wei, Jianhao Yin, Xiangming Kong. Mechanical strength and the degradation mechanism of metakaolin based geopolymer mixed with ordinary Portland cement and cured at high temperature and high relative humidity[J]. 中国化学工程学报, 2023, 60(8): 118-130. |
[2] | Yingxi Gao, Jiayi Shi, Jie Wang, Fan Zhang, Shichao Tian, Zhiyong Zhou, Zhongqi Ren. Enrichment of nervonic acid in Acer truncatum Bunge oil by combination of two-stage molecular distillation, one-stage urea complexation and five-stage solvent crystallization[J]. 中国化学工程学报, 2023, 59(7): 61-71. |
[3] | Ruicheng Shen, Shaojun Niu, Guobin Zhu, Kai Wu, Honghe Zheng. Mechanical behavior analysis of high power commercial lithium-ion batteries[J]. 中国化学工程学报, 2023, 58(6): 315-322. |
[4] | Guangyuan Chen, Tong Zhou, Meng Zhang, Zhongxiang Ding, Zhikun Zhou, Yuanhui Ji, Haiying Tang, Changsong Wang. Effects of heavy metal ions Cu2+/Pb2+/Zn2+ on kinetic rate constants of struvite crystallization[J]. 中国化学工程学报, 2023, 57(5): 10-16. |
[5] | Pengbao Lian, Lizhen Chen, Dan He, Guangyuan Zhang, Zishuai Xu, Jianlong Wang. Crystallization thermodynamics of 2,4(5)-dinitroimidazole in binary solvents[J]. 中国化学工程学报, 2023, 57(5): 173-182. |
[6] | Kai Xue, Yanchun Xue, Jing Wang, Shuya Zhang, Xingmei Guo, Xiangjun Zheng, Fu Cao, Qinghong Kong, Junhao Zhang, Zhong Jin. KOH-assisted aqueous synthesis of ZIF-67 with high-yield and its derived cobalt selenide/carbon composites for high-performance Li-ion batteries[J]. 中国化学工程学报, 2023, 57(5): 214-223. |
[7] | Dandan Ren, Shanshan Xiang, Yuwen Yan, Ruiying Kong, Xingchu Gong. Design and optimization of purification process of sinomenine hydrochloride[J]. 中国化学工程学报, 2023, 55(3): 63-72. |
[8] | Zhengchi Yin, Xiaoke Wu, Yanwei Yang, Huayu Zhang, Wangtao Li, Ruimin Zhu, Qiancheng Zheng, Zhengbao Wang. Fabrication of ZIF-8 membranes on dual-layer ZnO-PES/PES organic hollow fibers by in-situ crystallization[J]. 中国化学工程学报, 2023, 55(3): 101-110. |
[9] | Meng Li, Jianliang Xu, Huixia Xiao, Xia Liu, Guangsuo Yu, Xueli Chen. Exploring influence of MgO/CaO on crystallization characteristics to understand fluidity of synthetic coal slags[J]. 中国化学工程学报, 2023, 53(1): 1-13. |
[10] | Luyao Guo, Mengru Wang, Ronghe Lin, Jiaxin Ma, Shuanghao Zheng, Xiaoling Mou, Jun Zhang, Zhong-Shuai Wu, Yunjie Ding. Assembly of N- and P-functionalized carbon nanostructures derived from precursor-defined ternary copolymers for high-capacity lithium-ion batteries[J]. 中国化学工程学报, 2023, 53(1): 280-288. |
[11] | Pengbao Lian, Lizhen Chen, Daozhen Huang, Jianxin Xu, Zishuai Xu, Cai Cao, Jiaxiang Zhao, Jianlong Wang. Crystallization thermodynamics of 2,4(5)-dinitroimidazole in eleven pure solvents[J]. 中国化学工程学报, 2022, 48(8): 236-243. |
[12] | Yuanjie Li, Qiuxiang Yin, Meijing Zhang, Ying Bao, Baohong Hou, Jingkang Wang, Jiting Huang, Ling Zhou. Characterization and structure analysis of the heterosolvate of erythromycin thiocyanate[J]. 中国化学工程学报, 2022, 44(4): 268-274. |
[13] | Zhaofeng Zhang, Juanjuan Ding, Min Wu, Bochao Liu, Huiwen Song, Shengping You, Wei Qi, Rongxin Su, Zhimin He. Development of an integrated process for the production of high-purity γ-aminobutyric acid from fermentation broth[J]. 中国化学工程学报, 2022, 50(10): 361-368. |
[14] | Zeren Shang, Mingchen Li, Baohong Hou, Junli Zhang, Kuo Wang, Weiguo Hu, Tong Deng, Junbo Gong, Songgu Wu. Ultrasound assisted crystallization of cephalexin monohydrate: Nucleation mechanism and crystal habit control[J]. 中国化学工程学报, 2022, 41(1): 430-440. |
[15] | Tiefeng Wang, Jinxiang Dong. Ethylene glycol purification by melt crystallization: Removal of 2-methoxyethanol impurity[J]. 中国化学工程学报, 2021, 37(9): 39-45. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||