[1] D.X. Ma, B.Y. Li, K. Liu, X.L. Zhang, W.J. Zou, Y.Q. Yang, G.H. Li, Z. Shi, S.H. Feng, Bifunctional MOF heterogeneous catalysts based on the synergy of dual functional sites for efficient conversion of CO2 under mild and co-catalyst free conditions, J. Mater. Chem. A 3 (46) (2015) 23136-23142. https://doi.org/10.1039/c5ta07026k [2] S.Y. Liu, N. Suematsu, K. Maruoka, S. Shirakawa, Design of bifunctional quaternary phosphonium salt catalysts for CO2 fixation reaction with epoxides under mild conditions, Green Chem. 18 (17) (2016) 4611-4615 [3] https://doi.org/10.1039/c6gc01630hJ. Steinbauer, L. Longwitz, M. Frank, J. Epping, U. Kragl, T. Werner, Immobilized bifunctional phosphonium salts as recyclable organocatalysts in the cycloaddition of CO2 and epoxides, Green Chem. 19 (2017) 4435-4445 [4] C. Maeda, Y. Miyazaki, T. Ema, Recent progress in catalytic conversions of carbon dioxide, Catal. Sci. Technol. 4 (2014) 1482-1497. https://doi.org/10.1039/c6gc01630h [5] M. Sevilla, W. Sangchoom, N. Balahmar, A.B. Fuertes, R. Mokaya, Highly porous renewable carbons for enhanced storage of energy-related gases (H2 and CO2) at high pressures, ACS Sustain. Chem. Eng. 4 (2016) 4710-4716 [6] B. Li, L.X. Yang, X.B. Luo, J.P. Zou, Quaternary phosphonium salt-functionalized Cr-MIL-101:a bifunctional and efficient catalyst for CO2 cycloaddition with epoxides, J. CO2 Util. 36 (2020) 295-305 [7] J. Tharun, K.M. Bhin, R. Roshan, D.W. Kim, A.C. Kathalikkattil, R. Babu, H.Y. Ahn, Y.S. Won, D.W. Park, Ionic liquid tethered post functionalized ZIF-90 framework for the cycloaddition of propylene oxide and CO2, Green Chem, J. 18 (8), (2016) 2479-2487 [8] S. Huh, Direct catalytic conversion of CO2 to cyclic organic carbonates under mild reaction conditions by metal-organic frameworks, Catalysts. 9 (2019) 34-53 [9] B. Schäffner, F. Schäffner, S.P. Verevkin, A. Börner, Organic carbonates as solvents in synthesis and catalysis, Chem. Rev. 110 (2010) 4554-4581 [10] C. Maeda, T. Taniguchi, K. Ogawa, T. Ema, Bifunctional catalysts based on m-phenylene-bridged porphyrin dimer and trimer platforms:synthesis of cyclic carbonates from carbon dioxide and epoxides, Angew. Chem.Int. Ed. 54 (2015) 134-138 [11] C. Carvalho Rocha, T. Onfroy, J. Pilmé, A. Denicourt-Nowicki, A. Roucoux, F. Launay, Experimental and theoretical evidences of the influence of hydrogen bonding on the catalytic activity of a series of 2-hydroxy substituted quaternary ammonium salts in the styrene oxide/CO2 coupling reaction, J. Catal. 333 (2016) 29-39 [12] S. Supasitmongkol, P. Styring, A single centre aluminium(iii) catalyst and TBAB as an ionic organo-catalyst for the homogeneous catalytic synthesis of styrene carbonate, Catal. Sci. Technol. 4 (6) (2014) 1622-1630. https://doi.org/10.1039/c3cy01015e [13] K.R. Roshan, A.C. Kathalikkattil, J. Tharun, D.W. Kim, Y.S. Won, D.W. Park, Amino acid/KI as multi-functional synergistic catalysts for cyclic carbonate synthesis from CO2under mild reaction conditions:A DFT corroborated study, Dalton Trans. 43 (5) (2014) 2023-2031. https://doi.org/10.1039/c3dt52830h [14] L. Liu, S.M. Wang, Z.B. Han, M.L. Ding, D.Q. Yuan, H.L. Jiang, Exceptionally robust in-based metal-organic framework for highly efficient carbon dioxide capture and conversion, Inorg. Chem. 55 (7) (2016) 3558-3565. https://doi.org/10.1021/acs.inorgchem.6b00050 [15] R.C. Luo, X.T. Zhou, W.Y. Zhang, Z.X. Liang, J. Jiang, H.B. Ji, New bi-functional zinc catalysts based on robust and easy-to-handle N-chelating ligands for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions, Green Chem. 16 (9) (2014) 4179-4189. https://doi.org/10.1039/c4gc00671b [16] H.M. He, J.A. Perman, G.S. Zhu, S.Q. Ma, Metal-organic frameworks for CO2 chemical transformations, Small 12 (46) (2016) 6309-6324. https://pubmed.ncbi.nlm.nih.gov/27762496/ [17] Y.S. Kang, Y. Lu, K. Chen, Y. Zhao, P. Wang, W.Y. Sun, Metal-organic frameworks with catalytic centers:From synthesis to catalytic application, Coord. Chem. Rev. 378 (2019) 262-280. http://dx.doi.org/10.1016/j.ccr.2018.02.009 [18] L.G. Ding, B.J. Yao, W.L. Jiang, J.T. Li, Q.J. Fu, Y.N. Li, Z.H. Liu, J.P. Ma, Y.B. Dong, Bifunctional imidazolium-based ionic liquid decorated UiO-67 type MOF for selective CO2 adsorption and catalytic property for CO2 cycloaddition with epoxides, Inorg. Chem. 56 (4) (2017) 2337-2344. https://pubmed.ncbi.nlm.nih.gov/28182424/ [19] S. Yuan, L. Feng, K.C. Wang, J.D. Pang, M. Bosch, C. Lollar, Y.J. Sun, J.S. Qin, X.Y. Yang, P. Zhang, Q. Wang, L.F. Zou, Y.M. Zhang, L.L. Zhang, Y. Fang, J.L. Li, H.C. Zhou, Stable metal-organic frameworks:Design, synthesis, and applications, Adv. Mater. 30 (37) (2018) e1704303. https://pubmed.ncbi.nlm.nih.gov/29430732/ [20] D.R. Sun, Y.H. Fu, W.J. Liu, L. Ye, D.K. Wang, L. Yang, X.Z. Fu, Z.H. Li, Studies on photocatalytic CO2Reduction over NH2-uio-66(Zr) and its derivatives:Towards a better understanding of photocatalysis on metal-organic frameworks, Chem. Eur. J. 19 (42) (2013) 14279-14285. https://doi.org/10.1002/chem.201301728 [21] H.L. Liu, L.N. Chang, C.H. Bai, L.Y. Chen, R. Luque, Y.W. Li, Controllable encapsulation of "clean" metal clusters within MOFs through kinetic modulation:Towards advanced heterogeneous nanocatalysts, Angew. Chem. Int. Ed Engl. 55 (16) (2016) 5019-5023. https://pubmed.ncbi.nlm.nih.gov/26970412/ [22] C.C. Lin, Y.C. Huang, M. Usman, W.H. Chao, W.K. Lin, T.T. Luo, W.T. Whang, C.H. Chen, K.L. Lu, Zr-MOF/polyaniline composite films with exceptional seebeck coefficient for thermoelectric material applications, ACS Appl. Mater. Interfaces 11 (3) (2019) 3400-3406. https://pubmed.ncbi.nlm.nih.gov/30580511/ [23] K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.H. Bae, J.R. Long, Carbon dioxide capture in metal-organic frameworks, Chem. Rev. 112 (2) (2012) 724-781. https://pubmed.ncbi.nlm.nih.gov/22204561/ [24] H.M. He, Y. Song, F.X. Sun, Z. Bian, L.X. Gao, G.S. Zhu, A porous metal-organic framework formed by a V-shaped ligand and Zn(ii) ion with highly selective sensing for nitroaromatic explosives, J. Mater. Chem. A 3 (32) (2015) 16598-16603. https://doi.org/10.1039/c5ta03537f [25] T. Wen, D.X. Zhang, J. Zhang, Two-dimensional copper(I) coordination polymer materials as photocatalysts for the degradation of organic dyes, Inorg. Chem. 52 (1) (2013) 12-14. http://dx.doi.org/10.1021/ic302273h [26] P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin, P. Couvreur, G. Férey, R.E. Morris, C. Serre, Metal-organic frameworks in biomedicine, Chem. Rev. 112 (2) (2012) 1232-1268. https://doi.org/10.1021/cr200256v [27] L.P. Liu, J.Y. Zhang, H.B. Fang, L.P. Chen, C.Y. Su, Metal-organic gel material based on UiO-66-NH2 nanoparticles for improved adsorption and conversion of carbon dioxide, Chem. Asian J. 11 (16) (2016) 2278-2283. https://pubmed.ncbi.nlm.nih.gov/27332669/ [28] F. Hiroyasu, C. Kyle E, O'K. Michae, Y. Omar M, The chemistry and applications of metal-organic frameworks[J]. Science, 341(6149)(2013) 974-974. https://doi.org/10.1039/b902550b [29] J. Tharun, G. Mathai, A.C. Kathalikkattil, R. Roshan, Y.S. Won, S.J. Cho, J.S. Chang, D.W. Park, Exploring the catalytic potential of ZIF-90:Solventless and co-catalyst-free synthesis of propylene carbonate from propylene oxide and CO 2, ChemPlusChem 80 (4) (2015) 715-721. https://pubmed.ncbi.nlm.nih.gov/31973424/ [30] W.Y. Gao, Y. Chen, Y.H. Niu, K. Williams, L. Cash, P.J. Perez, L. Wojtas, J.F. Cai, Y.S. Chen, S.Q. Ma, Crystal engineering of an nbo topology metal-organic framework for chemical fixation of CO2under ambient conditions, Angew. Chem. Int. Ed. 53 (10) (2014) 2615-2619. https://doi.org/10.1002/anie.201309778 [31] Z.L. Fang, B. Bueken, D.E. De Vos, R.A. Fischer, Defect-engineered metal-organic frameworks, Angew. Chem. Int. Ed. 54 (25) (2015) 7234-7254. https://doi.org/10.1002/anie.201411540 [32] G.C. Shearer, S. Chavan, S. Bordiga, S. Svelle, U. Olsbye, K.P. Lillerud, Defect engineering:Tuning the porosity and composition of the metal-organic framework UiO-66 via modulated synthesis, Chem. Mater. 28 (11) (2016) 3749-3761. http://dx.doi.org/10.1021/acs.chemmater.6b00602 [33] S. Dissegna, K. Epp, W.R. Heinz, G. Kieslich, R.A. Fischer, Metal-organic frameworks:Defective metal-organic frameworks (adv. mater. 37/2018), Adv. Mater. 30 (37) (2018) 1870280. https://doi.org/10.1002/adma.201870280 [34] Y.J. Zhao, Q. Zhang, Y.L. Li, R. Zhang, G. Lu, Large-scale synthesis of monodisperse UiO-66 crystals with tunable sizes and missing linker defects via acid/base co-modulation, ACS Appl. Mater. Interfaces 9 (17) (2017) 15079-15085. http://dx.doi.org/10.1021/acsami.7b02887 [35] S.J. Garibay, S.M. Cohen, Isoreticular synthesis and modification of frameworks with the UiO-66 topology, Chem. Commun. (Camb) 46 (41) (2010) 7700-7702. https://pubmed.ncbi.nlm.nih.gov/20871917/ [36] C.A. Trickett, K.J. Gagnon, S. Lee, F. Gándara, H.B. Bürgi, O.M. Yaghi, Definitive molecular level characterization of defects in UiO-66 crystals, Angew. Chem. Int. Ed Engl. 54 (38) (2015) 11162-11167. https://pubmed.ncbi.nlm.nih.gov/26352027/ [37] A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke, P. Behrens, Modulated synthesis of Zr-based metal-organic frameworks:From nano to single crystals, Chemistry 17 (24) (2011) 6643-6651. https://pubmed.ncbi.nlm.nih.gov/21547962/ [38] G.C. Shearer, S. Chavan, J. Ethiraj, J.G. Vitillo, S. Svelle, U. Olsbye, C. Lamberti, S. Bordiga, K.P. Lillerud, Tuned to perfection:Ironing out the defects in metal-organic framework UiO-66, Chem. Mater. 26 (14) (2014) 4068-4071. https://doi.org/10.1021/cm501859p [39] Y.H. Fu, J.Y. Wu, R.F. Du, K. Guo, R. Ma, F.M. Zhang, W.D. Zhu, M.H. Fan, Temperature modulation of defects in NH2-UiO-66(Zr) for photocatalytic CO2 reduction, RSC Adv. 9 (65) (2019) 37733-37738. https://doi.org/10.1039/c9ra08097j [40] K. Tulig, K.S. Walton, An alternative UiO-66 synthesis for HCl-sensitive nanoparticle encapsulation, RSC Adv. 4 (93) (2014) 51080-51083. https://doi.org/10.1039/c4ra08856e [41] F.M. Zhang, S. Zheng, Q. Xiao, Y.J. Zhong, W.D. Zhu, A. Lin, M. Samy El-Shall, Synergetic catalysis of palladium nanoparticles encaged within amine-functionalized UiO-66 in the hydrodeoxygenation of vanillin in water, Green Chem. 18 (9) (2016) 2900-2908. https://doi.org/10.1039/c5gc02615f [42] G.W. Peterson, J.B. DeCoste, F. Fatollahi-Fard, D.K. Britt, Engineering UiO-66-NH2 for toxic gas removal, Ind. Eng. Chem. Res. 53 (2) (2014) 701-707. https://doi.org/10.1021/ie403366d [43] J. Gong, M.J. Katz, F.M. Kerton, Catalytic conversion of glucose to 5-hydroxymethylfurfural using zirconium-containing metal-organic frameworks using microwave heating, RSC Adv. 8 (55) (2018) 31618-31627. https://doi.org/10.1039/c8ra06021e [44] M. Kandiah, S. Usseglio, S. Svelle, U. Olsbye, K.P. Lillerud, M. Tilset, Post-synthetic modification of the metal-organic framework compound UiO-66, J. Mater. Chem. 20 (44) (2010) 9848. https://doi.org/10.1039/c0jm02416c [45] S.Y. Kim, A.R. Kim, J.W. Yoon, H.J. Kim, Y.S. Bae, Creation of mesoporous defects in a microporous metal-organic framework by an acetic acid-fragmented linker co-assembly and its remarkable effects on methane uptake, Chem. Eng. J. 335 (2018) 94-100. http://dx.doi.org/10.1016/j.cej.2017.10.078 [46] G.R. Cai, H.L. Jiang, A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability, Angew. Chem. Int. Ed. 56 (2) (2017) 563-567. https://doi.org/10.1002/anie.201610914 [47] Y.J. Qin, X. Han, Y.P. Li, A.J. Han, W.X. Liu, H.J. Xu, J.F. Liu, Hollow mesoporous metal-organic frameworks with enhanced diffusion for highly efficient catalysis, ACS Catal. 10 (11) (2020) 5973-5978. http://dx.doi.org/10.1021/acscatal.0c01432 [48] L. Zhou, X.H. Zhang, Y.L. Chen, Modulated synthesis of zirconium metal-organic framework UiO-66 with enhanced dichloromethane adsorption capacity, Mater. Lett. 197 (2017) 167-170. http://dx.doi.org/10.1016/j.matlet.2017.03.162 [49] X.L. Zhang, N. Zhang, C.X. Gan, Y.F. Liu, L. Chen, C. Zhang, Y.Z. Fang, Synthesis of In2S3/UiO-66 hybrid with enhanced photocatalytic activity towards methyl orange and tetracycline hydrochloride degradation under visible-light irradiation, Mater. Sci. Semicond. Process. 91 (2019) 212-221. http://dx.doi.org/10.1016/j.mssp.2018.11.014 [50] Á. Reyes-Carmona, A. Arango-Díaz, E. Moretti, A. Talon, L. Storaro, M. Lenarda, A. Jiménez-López, E. Rodríguez-Castellón, CuO/CeO2 supported on Zr doped SBA-15 as catalysts for preferential CO oxidation (CO-PROX), J. Power Sources 196 (9) (2011) 4382-4387. http://dx.doi.org/10.1016/j.jpowsour.2010.10.019 [51] R. Ou, W.J. Zhu, L.L. Li, X.Y. Wang, Q. Wang, Q. Gao, A.H. Yuan, J.M. Pan, F. Yang, Boosted capture of volatile organic compounds in adsorption capacity and selectivity by rationally exploiting defect-engineering of UiO-66(Zr), Sep. Purif. Technol. 266 (2021) 118087. http://dx.doi.org/10.1016/j.seppur.2020.118087 [52] K. Xuan, Y.F. Pu, F. Li, A.X. Li, J. Luo, L. Li, F. Wang, N. Zhao, F.K. Xiao, Direct synthesis of dimethyl carbonate from CO2 and methanol over trifluoroacetic acid modulated UiO-66, J. CO2 Util. 27 (2018) 272-282. http://dx.doi.org/10.1016/j.jcou.2018.08.002 [53] H. Wu, Y.S. Chua, V. Krungleviciute, M. Tyagi, P. Chen, T. Yildirim, W. Zhou, Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption, J. Am. Chem. Soc. 135 (28) (2013) 10525-10532. https://pubmed.ncbi.nlm.nih.gov/23808838/ [54] Q. Ran, Z.B. Yu, R.H. Jiang, L. Qian, Y.P. Hou, F. Yang, F.Y. Li, M.J. Li, Q.Q. Sun, H.Q. Zhang, Path of electron transfer created in S-doped NH2-UiO-66 bridged ZnIn2S4/MoS2 nanosheet heterostructure for boosting photocatalytic hydrogen evolution, Catal. Sci. Technol. 10 (8) (2020) 2531-2539. https://doi.org/10.1039/d0cy00127a [55] J.L. Song, Z.F. Zhang, S.Q. Hu, T.B. Wu, T. Jiang, B.X. Han, MOF-5/n-Bu4NBr:An efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions, Green Chem. 11 (7) (2009) 1031. https://doi.org/10.1039/b902550b [56] B. Mousavi, S. Chaemchuen, B. Moosavi, Z.X. Luo, N. Gholampour, F. Verpoort, Zeolitic imidazole framework-67 as an efficient heterogeneous catalyst for the conversion of CO2 to cyclic carbonates, New J. Chem. 40 (6) (2016) 5170-5176. https://doi.org/10.1039/c6nj00128a [57] Y.W. Ren, Y.C. Shi, J.X. Chen, S.R. Yang, C.R. Qi, H.F. Jiang, Ni(salphen)-based metal-organic framework for the synthesis of cyclic carbonates by cycloaddition of CO2 to epoxides, RSC Adv. 3 (7) (2013) 2167. https://doi.org/10.1039/c2ra22550f [58] P.Z. Li, X.J. Wang, J. Liu, J.S. Lim, R.Q. Zou, Y.L. Zhao, A triazole-containing metal-organic framework as a highly effective and substrate size-dependent catalyst for CO2 conversion, J. Am. Chem. Soc. 138 (7) (2016) 2142-2145. https://doi.org/10.1021/jacs.5b13335 [59] C.M. Miralda, E.E. Macias, M.Q. Zhu, P. Ratnasamy, M.A. Carreon, Zeolitic imidazole framework-8 catalysts in the conversion of CO2 to chloropropene carbonate, ACS Catal. 2 (1) (2012) 180-183. http://dx.doi.org/10.1021/cs200638h [60] P. Patel, B. Parmar, R.I. Kureshy, N.U.H. Khan, E. Suresh, Amine-functionalized Zn(ii) MOF as an efficient multifunctional catalyst for CO2 utilization and sulfoxidation reaction, Dalton Trans. 47 (24) (2018) 8041-8051. https://pubmed.ncbi.nlm.nih.gov/29872804/ [61] X.Q. Huang, Y.F. Chen, Z.G. Lin, X.Q. Ren, Y.N. Song, Z.Z. Xu, X.M. Dong, X.G. Li, C.W. Hu, B. Wang, Zn-BTC MOFs with active metal sites synthesized via a structure-directing approach for highly efficient carbon conversion, Chem. Commun. 50 (20) (2014) 2624-2627. https://doi.org/10.1039/c3cc49187k [62] F. Della Monica, A. Buonerba, A. Grassi, C. Capacchione, S. Milione, Glycidol:An hydroxyl-containing epoxide playing the double role of substrate and catalyst for CO2 cycloaddition reactions, ChemSusChem 9 (24) (2016) 3457-3464. https://pubmed.ncbi.nlm.nih.gov/27870388/ [63] W. Liu, G.H. Lu, Carbonation of epoxidized methyl soyates in tetrabutylammonium bromide-based deep eutectic solvents, J. Oleo Sci. 67 (5) (2018) 609-616. https://pubmed.ncbi.nlm.nih.gov/29628488/ [64] R. Babu, A.C. Kathalikkattil, R. Roshan, J. Tharun, D.W. Kim, D.W. Park, Dual-porous metal organic framework for room temperature CO2 fixation via cyclic carbonate synthesis, Green Chem. 18 (1) (2016) 232-242. https://doi.org/10.1039/c5gc01763g [65] D.X. Ma, Y.W. Zhang, S.S. Jiao, J.X. Li, K. Liu, Z. Shi, A tri-functional metal-organic framework heterogeneous catalyst for efficient conversion of CO2 under mild and co-catalyst free conditions, Chem. Commun. (Camb) 55 (95) (2019) 14347-14350. https://pubmed.ncbi.nlm.nih.gov/31720630/ [66] B.N. Song, L. Guo, R. Zhang, X.G. Zhao, H.M. Gan, C. Chen, J.Z. Chen, W.W. Zhu, Z.S. Hou, The polymeric quaternary ammonium salt supported on silica gel as catalyst for the efficient synthesis of cyclic carbonate, J. CO2 Util. 6 (2014) 62-68. http://dx.doi.org/10.1016/j.jcou.2014.03.005 [67] J.Q. Wang, D.L. Kong, J.Y. Chen, F. Cai, L.N. He, Synthesis of cyclic carbonates from epoxides and carbon dioxide over silica-supported quaternary ammonium salts under supercritical conditions, J. Mol. Catal. A Chem. 249 (1-2) (2006) 143-148. http://dx.doi.org/10.1016/j.molcata.2006.01.008 [68] J.Q. Wang, D.L. Kong, J.Y. Chen, F. Cai, L.N. He, Synthesis of cyclic carbonates from epoxides and carbon dioxide over silica-supported quaternary ammonium salts under supercritical conditions, J. Mol. Catal. A Chem. 249 (2006) 143-148 |