[1] Y.M. Wu, R.Z. Li, D.F. Hildebrand, Biosynthesis and metabolic engineering of palmitoleate production, an important contributor to human health and sustainable industry, Prog. Lipid Res. 51 (4) (2012) 340–349. https://pubmed.ncbi.nlm.nih.gov/22658963/ [2] I. Çimen, B. Kocatürk, S. Koyuncu, Ö. Tufanlı, U.I. Onat, A.D. Yıldırım, O. Apaydın, Ş. Demirsoy, Z.G. Aykut, U.T. Nguyen, S.M. Watkins, G.S. Hotamışlıgil, E. Erbay, Prevention of atherosclerosis by bioactive palmitoleate through suppression of organelle stress and inflammasome activation, Sci. Transl. Med. 8 (358) (2016)358ra126-358ra126. [3] A.E. Griel, Y.M. Cao, D.D. Bagshaw, A.M. Cifelli, B. Holub, P.M. Kris-Etherton, A macadamia nut-rich diet reduces total and LDL-cholesterol in mildly hypercholesterolemic men and women, J. Nutr. 138 (4) (2008) 761–767. https://pubmed.ncbi.nlm.nih.gov/18356332/ [4] A.E. Griel, Y.M. Cao, D.D. Bagshaw, A.M. Cifelli, B. Holub, P.M. Kris-Etherton, A macadamia nut-rich diet reduces total and LDL-cholesterol in mildly hypercholesterolemic men and women, J. Nutr. 138 (4) (2008) 761–767. https://pubmed.ncbi.nlm.nih.gov/18356332/ [5] A.E. Griel, Y.M. Cao, D.D. Bagshaw, A.M. Cifelli, B. Holub, P.M. Kris-Etherton, A macadamia nut-rich diet reduces total and LDL-cholesterol in mildly hypercholesterolemic men and women, J. Nutr. 138 (4) (2008) 761–767. https://pubmed.ncbi.nlm.nih.gov/18356332/ [6] I. Kolouchová, K. Sigler, O. Schreiberová, J. Masák, T. Řezanka, New yeast-based approaches in production of palmitoleic acid, Bioresour. Technol. 192 (2015) 726–734. https://pubmed.ncbi.nlm.nih.gov/26101962/ [7] A.E. Griel, Y.M. Cao, D.D. Bagshaw, A.M. Cifelli, B. Holub, P.M. Kris-Etherton, A macadamia nut-rich diet reduces total and LDL-cholesterol in mildly hypercholesterolemic men and women, J. Nutr. 138 (4) (2008) 761–767. https://pubmed.ncbi.nlm.nih.gov/18356332/ [8] I. Lang, L. Hodac, T. Friedl, I. Feussner, Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection, BMC Plant Biol. 11 (2011) 124. https://pubmed.ncbi.nlm.nih.gov/21896160/ [9] A.J. Klok, P.P. Lamers, D.E. Martens, R.B. Draaisma, R.H. Wijffels, Edible oils from microalgae: insights in TAG accumulation, Trends Biotechnol. 32 (10) (2014) 521–528. http://dx.doi.org/10.1016/j.tibtech.2014.07.004 [10] H. Wang, L.L. Gao, L. Chen, F.J. Guo, T.Z. Liu, Integration process of biodiesel production from filamentous oleaginous microalgae Tribonema minus, Bioresour. Technol. 142 (2013) 39–44. http://dx.doi.org/10.1016/j.biortech.2013.05.058 [11] T. Matsunaga, H. Takeyama, Y. Miura, T. Yamazaki, H. Furuya, K. Sode, Screening of marine cyanobacteria for high palmitoleic acid production, FEMS Microbiol. Lett. 133 (1–2) (1995) 137–141. http://dx.doi.org/10.1016/0378-1097(95)00350-E [12] O. Osundeko, P. Ansolia, S.K. Gupta, P. Bag, A.K. Bajhaiya, Promises and Challenges of Growing Microalgae in Wastewater, Water Conservation, Recycling and Reuse: Issues and Challenges, Springer, Berlin (2019)29-53 http://dx.doi.org/10.1007/978-981-13-3179-4_2 [13] I. Schulze, S. Hansen, S. Großhans, T. Rudszuck, K. Ochsenreither, C. Syldatk, A. Neumann, Characterization of newly isolated oleaginous yeasts - Cryptococcus podzolicus, Trichosporon porosum and Pichia segobiensis, AMB Express 4 (2014) 24. https://doi.org/10.1186/s13568-014-0024-0 [14] J.L. Adrio, Oleaginous yeasts: promising platforms for the production of oleochemicals and biofuels, Biotechnol. Bioeng. 114 (9) (2017) 1915–1920. https://pubmed.ncbi.nlm.nih.gov/28498495/ [15] C.H. Calvey, Y.-K. Su, L.B. Willis, M. McGee, T.W. Jeffries, Nitrogen limitation, oxygen limitation, and lipid accumulation in Lipomyces starkeyi, Bioresour Technol. 200 (2016) 780-788. [16] S. Papanikolaou, I. Chevalot, M. Komaitis, I. Marc, G. Aggelis, Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures, Appl. Microbiol. Biotechnol. 58 (3) (2002) 308–312. https://pubmed.ncbi.nlm.nih.gov/11935181/ [17] H.W. Yen, Z.Y. Zhang, Effects of dissolved oxygen level on cell growth and total lipid accumulation in the cultivation of Rhodotorula glutinis, J. Biosci. Bioeng. 112 (1) (2011) 71–74. http://dx.doi.org/10.1016/j.jbiosc.2011.03.013 [18] C.E. Martin, C.S. Oh, Y.D. Jiang, Regulation of long chain unsaturated fatty acid synthesis in yeast, Biochim. Biophys. Acta 1771 (3) (2007) 271–285. https://pubmed.ncbi.nlm.nih.gov/16920014/ [19] C.E. Martin, C.S. Oh, Y.D. Jiang, Regulation of long chain unsaturated fatty acid synthesis in yeast, Biochim. Biophys. Acta 1771 (3) (2007) 271–285. https://pubmed.ncbi.nlm.nih.gov/16920014/ [20] J.P. Park, Y.M. Kim, S.W. Kim, H.J. Hwang, Y.J. Cho, Y.S. Lee, C.H. Song, J.W. Yun, Effect of aeration rate on the mycelial morphology and exo-biopolymer production in Cordyceps militaris, Process. Biochem. 37 (11) (2002) 1257–1262. http://dx.doi.org/10.1016/S0032-9592(02)00005-5 [21] S.U. Ahmed, S.K. Singh, A. Pandey, S. Kanjilal, R.B. Prasad, Application of response surface method for studying the role of dissolved oxygen and agitation speed on gamma-linolenic acid production, Appl. Biochem. Biotechnol. 152 (1) (2009) 108–116. https://pubmed.ncbi.nlm.nih.gov/18480973/ [22] Y.Q. Cui, R.G. van der Lans, K.C. Luyben, Effect of agitation intensities on fungal morphology of submerged fermentation, Biotechnol. Bioeng. 55 (5) (1997) 715–726. https://pubmed.ncbi.nlm.nih.gov/18636582/ [23] P.A.E.P. Meesters, G.N.M. Huijberts, G. Eggink, High-cell-density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source, Appl. Microbiol. Biotechnol. 45 (5) (1996) 575–579. http://dx.doi.org/10.1007/s002530050731 [24] X.J. Qian, O. Gorte, L. Chen, W.M. Zhang, W.L. Dong, J.F. Ma, M. Jiang, F.X. Xin, K. Ochsenreither, Co-production of single cell oil and gluconic acid using oleaginous Cryptococcus podzolicus DSM 27192, Biotechnol. Biofuels 12 (2019) 127. https://doi.org/10.1186/s13068-019-1469-9 [25] I. Kolouchová, O. Ma?átková, K. Sigler, J. Masák, T. Řezanka, Production of palmitoleic and linoleic acid in oleaginous and nonoleaginous yeast biomass, Int. J. Anal. Chem. 2016 (2016) 7583684. http://dx.doi.org/10.1155/2016/7583684 [26] T.L. Lübbehüsen, J. Nielsen, M. McIntyre, Aerobic and anaerobic ethanol production by Mucor circinelloides during submerged growth, Appl. Microbiol. Biotechnol. 63 (5) (2004) 543–548. https://pubmed.ncbi.nlm.nih.gov/12879305/ [27] M. Papini, I. Nookaew, M. Uhlén, J. Nielsen, Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae, Microb. Cell Fact. 11 (2012) 136. https://pubmed.ncbi.nlm.nih.gov/23043429/ [28] S.Y. Choi, D.D.Y. Ryu, J.S. Rhee, Production of microbial lipid: effects of growth rate and oxygen on lipid synthesis and fatty acid composition ofRhodotorula gracilis, Biotechnol. Bioeng. 24 (5) (1982) 1165–1172. https://doi.org/10.1002/bit.260240513 [29] S.V. Kamzolova, A.R. Fatykhova, E.G. Dedyukhina, S.G. Anastassiadis, N.P. Golovchenko, I.G. Morgunov, Citric acid production by yeast grown on glycerol-containing waste from biodiesel industry, Food Technol Biotechnol. 49(1) (2011) 65-74. [30] E. Lohmeier-Vogel, K. Skoog, H. Vogel, B. Hahn-Hägerdal, 31P nuclear magnetic resonance study of the effect of azide on xylose fermentation by Candida tropicalis, Appl. Environ. Microbiol. 55 (8) (1989) 1974–1980. https://pubmed.ncbi.nlm.nih.gov/2782875/ [31] J.P.A. Silva, S.I. Mussatto, I.C. Roberto, J.A. Teixeira, Fermentation medium and oxygen transfer conditions that maximize the xylose conversion to ethanol by Pichia stipitis, Renew. Energy 37 (1) (2012) 259–265. http://dx.doi.org/10.1016/j.renene.2011.06.032 |