[1] M.T. Sikder, M.M. Rahman, M. Jakariya, T. Hosokawa, M. Kurasaki, T. Saito, Remediation of water pollution with native cyclodextrins and modified cyclodextrins: A comparative overview and perspectives, Chem. Eng. J. 355 (2019) 920–941. [2] L.M. Bai, Y.T. Liu, A. Ding, N.Q. Ren, G.B. Li, H. Liang, Fabrication and characterization of thin-film composite (TFC) nanofiltration membranes incorporated with cellulose nanocrystals (CNCs) for enhanced desalination performance and dye removal, Chem. Eng. J. 358 (2019) 1519–1528. [3] W.J. Lau, A.F. Ismail, N. Misdan, M.A. Kassim, A recent progress in thin film composite membrane: A review, Desalination 287 (2012) 190–199. [4] M.M. Pendergast, E.M.V. Hoek, A review of water treatment membrane nanotechnologies, Energy Environ. Sci. 4 (6) (2011) 1946. [5] X. He, H. Sin, B. Liang, Z.A. Ghazi, A.M. Khattak, N.A. Khan, H.R. Alanagh, L.S. Li, X.Q. Lu, Z.Y. Tang, Controlling the selectivity of conjugated microporous polymer membrane for efficient organic solvent nanofiltration, Adv. Funct. Mater. 29 (32) (2019) 1900134. [6] Z. Tan, S.F. Chen, X.S. Peng, L. Zhang, C.J. Gao, Polyamide membranes with nanoscale Turing structures for water purification, Science 360 (6388) (2018) 518–521. [7] P. Sarkar, S. Modak, S. Karan, Ultraselective and highly permeable polyamide nanofilms for ionic and molecular nanofiltration, Adv. Funct. Mater. 31 (3) (2021) 2007054. [8] H.W. Peng, W.H. Zhang, W.S. Hung, N.X. Wang, J. Sun, K.R. Lee, Q.F. An, C.M. Liu, Q. Zhao, Phosphonium modification leads to ultrapermeable antibacterial polyamide composite membranes with unreduced thickness, Adv. Mater. 32 (23) (2020) 2001383. [9] Y.Z. Liang, Y.Z. Zhu, C. Liu, K.R. Lee, W.S. Hung, Z.Y. Wang, Y.Y. Li, M. Elimelech, J. Jin, S.H. Lin, Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation, Nat. Commun. 11 (2020) 2015. [10] Z.Y. Wang, Z.X. Wang, S.H. Lin, H.L. Jin, S.J. Gao, Y.Z. Zhu, J. Jin, Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination, Nat. Commun. 9 (2018) 2004. [11] N. Akther, S. Phuntsho, Y. Chen, N. Ghaffour, H.K. Shon, Recent advances in nanomaterial-modified polyamide thin-film composite membranes for forward osmosis processes, J. Membr. Sci. 584 (2019) 20–45. [12] L.Y. Wang, M.Q. Fang, J. Liu, J. He, J.D. Li, J.D. Lei, Layer-by-layer fabrication of high-performance polyamide/ZIF-8 nanocomposite membrane for nanofiltration applications, ACS Appl. Mater. Interfaces 7 (43) (2015) 24082–24093. [13] J. Yin, G.C. Zhu, B.L. Deng, Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification, Desalination 379 (2016) 93–101. [14] H. Yan, X.P. Miao, J. Xu, G.Y. Pan, Y. Zhang, Y.T. Shi, M. Guo, Y.Q. Liu, The porous structure of the fully-aromatic polyamide film in reverse osmosis membranes, J. Membr. Sci. 475 (2015) 504–510. [15] M.R. Chowdhury, J. Steffes, B.D. Huey, J.R. McCutcheon, 3D printed polyamide membranes for desalination, Science 361 (6403) (2018) 682–686. [16] C. Cheng, P.Y. Li, T.H. Zhang, X.F. Wang, B.S. Hsiao, Enhanced pervaporation performance of polyamide membrane with synergistic effect of porous nanofibrous support and trace graphene oxide lamellae, Chem. Eng. Sci. 196 (2019) 265–276. [17] S. Karan, Z. Jiang, A.G. Livingston, Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation, Science 348 (6241) (2015) 1347–1351. [18] J.J. Wang, H.C. Yang, M.B. Wu, X. Zhang, Z.K. Xu, Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance, J. Mater. Chem. A 5 (31) (2017) 16289–16295. [19] D.D. Chen, T.Y. Liu, J. Kang, R.Z. Xu, Y. Cao, M. Xiang, Enhancing the permeability and antifouling properties of polyamide composite reverse osmosis membrane by surface modification with zwitterionic amino acid l-arginine, Adv. Mater. Interfaces 6 (14) (2019) 1900706. [20] M.Y. Wu, J.Q. Yuan, H. Wu, Y.L. Su, H. Yang, X.D. You, R.N. Zhang, X.Y. He, N.A. Khan, R. Kasher, Z.Y. Jiang, Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability, J. Membr. Sci. 576 (2019) 131–141. [21] Z. Zhang, X.S. Shi, R. Wang, A.K. Xiao, Y. Wang, Ultra-permeable polyamide membranes harvested by covalent organic framework nanofiber scaffolds: A two-in-one strategy, Chem. Sci. 10 (39) (2019) 9077–9083. [22] W.J. Lau, S. Gray, T. Matsuura, D. Emadzadeh, J.P. Chen, A.F. Ismail, A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches, Water Res. 80 (2015) 306–324. [23] Z.W. Jiang, S. Karan, A.G. Livingston, Water transport through ultrathin polyamide nanofilms used for reverse osmosis, Adv. Mater. 30 (15) (2018) e1705973. [24] G.Z. Li, Z.H. Si, S. Yang, T.L. Xue, J. Baeyens, P.Y. Qin, Fast layer-by-layer assembly of PDMS for boosting the gas separation of P84 membranes, Chem. Eng. Sci. 253 (2022) 117588. [25] R. Zhang, S.L. Ji, N.X. Wang, L. Wang, G.J. Zhang, J.R. Li, Coordination-driven in situ self-assembly strategy for the preparation of metal–organic framework hybrid membranes, Angew. Chem. Int. Ed. 53 (37) (2014) 9775–9779. [26] C. van Goethem, R. Verbeke, S. Hermans, R. Bernstein, I.F.J. Vankelecom, Controlled positioning of MOFs in interfacially polymerized thin-film nanocomposites, J. Mater. Chem. A 4 (42) (2016) 16368–16376. [27] S. Heile, S. Rosenberger, A. Parker, B. Jefferson, E.J. McAdam, Establishing the suitability of symmetric ultrathin wall polydimethylsiloxane hollow-fibre membrane contactors for enhanced CO2 separation during biogas upgrading, J. Membr. Sci. 452 (2014) 37–45. [28] X.L. Liu, Y.S. Li, Y. Liu, G.Q. Zhu, J. Liu, W.S. Yang, Capillary supported ultrathin homogeneous silicalite-poly(dimethylsiloxane) nanocomposite membrane for bio-butanol recovery, J. Membr. Sci. 369 (1–2) (2011) 228–232. [29] G. Yang, Z.L. Xie, A.W. Thornton, C.M. Doherty, M.M. Ding, H. Xu, M. Cran, D. Ng, S. Gray, Ultrathin poly(vinyl alcohol)/MXene nanofilm composite membrane with facile intrusion-free construction for pervaporative separations, J. Membr. Sci. 614 (2020) 118490. [30] J.Y. Tian, H.L. Chang, S.S. Gao, Y. Zong, B. van der Bruggen, R.J. Zhang, Direct generation of an ultrathin (8.5 nm) polyamide film with ultrahigh water permeance via in situ interfacial polymerization on commercial substrate membrane, J. Membr. Sci. 634 (2021) 119450. [31] P. Qin, Z. Si, H. Shan, D. Cai, Polymer/metal–organic frameworks membranes and pervaporation, in: Polymer Nanocomposite Membranes for Pervaporation, Elsevier Academic Press, 2020. [32] W. Yang, H. Xu, W. Chen, Z. Shen, M.M. Ding, T. Lin, H. Tao, Q. Kong, G. Yang, Z.L. Xie, A polyamide membrane with tubular crumples incorporating carboxylated single-walled carbon nanotubes for high water flux, Desalination 479 (2020) 114330. [33] X.W. Zhu, Z. Yang, Z.D. Gan, X.X. Cheng, X.B. Tang, X.S. Luo, D.L. Xu, G.B. Li, H. Liang, Toward tailoring nanofiltration performance of thin-film composite membranes: Novel insights into the role of poly(vinyl alcohol) coating positions, J. Membr. Sci. 614 (2020) 118526. [34] G.H. Gong, P. Wang, Z.Y. Zhou, Y.X. Hu, New insights into the role of an interlayer for the fabrication of highly selective and permeable thin-film composite nanofiltration membrane, ACS Appl. Mater. Interfaces 11 (7) (2019) 7349–7356. [35] J.Y. Zhu, J.W. Hou, S.S. Yuan, Y. Zhao, Y. Li, R.J. Zhang, M.M. Tian, J. Li, J. Wang, B. van der Bruggen, MOF-positioned polyamide membranes with a fishnet-like structure for elevated nanofiltration performance, J. Mater. Chem. A 7 (27) (2019) 16313–16322. [36] J.X. Jiang, F.B. Su, A. Trewin, C.D. Wood, H.J. Niu, J.T.A. Jones, Y.Z. Khimyak, A.I. Cooper, Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks, J. Am. Chem. Soc. 130 (24) (2008) 7710–7720. [37] Y. Zhang, S.N. Riduan, Functional porous organic polymers for heterogeneous catalysis, Chem. Soc. Rev. 41 (6) (2012) 2083–2094. [38] S.K. Das, P. Bhanja, S.K. Kundu, S. Mondal, A. Bhaumik, Role of surface phenolic-OH groups in N-rich porous organic polymers for enhancing the CO2 uptake and CO2/N2 selectivity: Experimental and computational studies, ACS Appl. Mater. Interfaces 10 (28) (2018) 23813–23824. [39] C.B. Wang, Z.Y. Li, J.X. Chen, Z. Li, Y.H. Yin, L. Cao, Y.L. Zhong, H. Wu, Covalent organic framework modified polyamide nanofiltration membrane with enhanced performance for desalination, J. Membr. Sci. 523 (2017) 273–281. [40] V. Freger, Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization, Langmuir 19 (11) (2003) 4791–4797. [41] V. Freger, Kinetics of film formation by interfacial polycondensation, Langmuir 21 (5) (2005) 1884–1894. [42] M.G. Schwab, B. Fassbender, H.W. Spiess, A. Thomas, X. Feng, K. Müllen, Catalyst-free preparation of melamine-based microporous polymer networks through Schiff base chemistry, J. Am. Chem. Soc. 131 (21) (2009) 7216–7217. [43] J.W. Yuan, W.S. Hung, H.P. Zhu, K.C. Guan, Y.F. Ji, Y.Y. Mao, G.P. Liu, K.R. Lee, W.Q. Jin, Fabrication of ZIF-300 membrane and its application for efficient removal of heavy metal ions from wastewater, J. Membr. Sci. 572 (2019) 20–27. [44] S. Bhunia, P. Bhanja, S.K. Das, T. Sen, A. Bhaumik, Triazine containing N-rich microporous organic polymers for CO2 capture and unprecedented CO2/N2 selectivity, J. Solid State Chem. 247 (2017) 113–119. [45] J.Y. Weng, Y.L. Xu, W.C. Song, Y.H. Zhang, Tuning the adsorption and fluorescence properties of aminal-linked porous organic polymers through N-heterocyclic group decoration, J. Polym. Sci. A Polym. Chem. 54 (12) (2016) 1724–1730. [46] J.Q. Yuan, M.Y. Wu, H. Wu, Y.N. Liu, X.D. You, R.N. Zhang, Y.L. Su, H. Yang, J.L. Shen, Z.Y. Jiang, Covalent organic framework-modulated interfacial polymerization for ultrathin desalination membranes, J. Mater. Chem. A 7 (44) (2019) 25641–25649. [47] Y.L. Ren, J.Y. Zhu, S.Z. Cong, J. Wang, B. van der Bruggen, J.D. Liu, Y.T. Zhang, High flux thin film nanocomposite membranes based on porous organic polymers for nanofiltration, J. Membr. Sci. 585 (2019) 19–28. [48] S. Zhu, S. Zhao, Z. Wang, X.X. Tian, M.Q. Shi, J.X. Wang, S.C. Wang, Improved performance of polyamide thin-film composite nanofiltration membrane by using polyetersulfone/polyaniline membrane as the substrate, J. Membr. Sci. 493 (2015) 263–274. [49] Z. Zhai, N. Zhao, J.H. Liu, W.J. Dong, P. Li, H.X. Sun, Q.J. Niu, Advanced nanofiltration membrane fabricated on the porous organic cage tailored support for water purification application, Sep. Purif. Technol. 230 (2020) 115845. [50] X.W. Zhu, D.L. Xu, Z.D. Gan, X.S. Luo, X.B. Tang, X.X. Cheng, L.M. Bai, G.B. Li, H. Liang, Improving chlorine resistance and separation performance of thin-film composite nanofiltration membranes with in situ grafted melamine, Desalination 489 (2020) 114539. [51] P. Karami, B. Khorshidi, J.B.P. Soares, M. Sadrzadeh, Fabrication of highly permeable and thermally stable reverse osmosis thin film composite polyamide membranes, ACS Appl. Mater. Interfaces 12 (2) (2020) 2916–2925. [52] B. Ukrainsky, G.Z. Ramon, Temperature measurement of the reaction zone during polyamide film formation by interfacial polymerization, J. Membr. Sci. 566 (2018) 329–335. [53] X. Li, Y.X. Liu, J. Wang, J. Gascon, J.S. Li, B. van der Bruggen, Metal–organic frameworks based membranes for liquid separation, Chem. Soc. Rev. 46 (23) (2017) 7124–7144. [54] N.A. Khan, H. Wu, J.Q. Yuan, M.Y. Wu, P.F. Yang, M.Y. Long, A.U. Rahman, N.M. Ahmad, R.N. Zhang, Z.Y. Jiang, Incorporating covalent organic framework nanosheets into polyamide membranes for efficient desalination, Sep. Purif. Technol. 274 (2021) 119046. [55] M.B. Wu, Y. Lv, H.C. Yang, L.F. Liu, X. Zhang, Z.K. Xu, Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances, J. Membr. Sci. 515 (2016) 238–244. [56] X.H. Ma, Z.K. Yao, Z. Yang, H. Guo, Z.L. Xu, C.Y. Tang, M. Elimelech, Nanofoaming of polyamide desalination membranes to tune permeability and selectivity, Environ. Sci. Technol. Lett. 5 (2) (2018) 123–130. [57] D. Vezzani, S. Bandini, Donnan equilibrium and dielectric exclusion for characterization of nanofiltration membranes, Desalination 149 (1–3) (2002) 477–483. [58] J.Y. Guan, L. Fan, Y.N. Liu, B.B. Shi, J.Q. Yuan, R.N. Zhang, X.D. You, M.R. He, Y.L. Su, Z.Y. Jiang, Incorporating arginine-FeIII complex into polyamide membranes for enhanced water permeance and antifouling performance, J. Membr. Sci. 602 (2020) 117980. [59] B. van der Bruggen, J. Schaep, D. Wilms, C. Vandecasteele, Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration, J. Membr. Sci. 156 (1) (1999) 29–41. [60] W.R. Bowen, J.S. Welfoot, Modelling the performance of membrane nanofiltration—Critical assessment and model development, Chem. Eng. Sci. 57 (7) (2002) 1121–1137. [61] H. Wang, S.H. Tang, Y.X. Ni, C.R. Zhang, X.W. Zhu, Q. Zhao, Covalent cross-linking for interface engineering of high flux UiO-66-TMS/PDMS pervaporation membranes, J. Membr. Sci. 598 (2020) 117791. [62] S.S. Bing, J.Q. Wang, H. Xu, Y.Y. Zhao, Y. Zhou, L. Zhang, C.J. Gao, L.A. Hou, Polyamide thin-film composite membrane modified with persulfate for improvement of perm-selectivity and chlorine-resistance, J. Membr. Sci. 555 (2018) 318–326. [63] J. Dechnik, J. Gascon, C.J. Doonan, C. Janiak, C.J. Sumby, Mixed-matrix membranes, Angew. Chem. Int. Ed. 56 (32) (2017) 9292–9310. [64] N.X. Wang, X.T. Li, L. Wang, L.L. Zhang, G.J. Zhang, S.L. Ji, Nanoconfined zeolitic imidazolate framework membranes with composite layers of nearly zero thickness, ACS Appl. Mater. Interfaces 8 (34) (2016) 21979–21983. [65] J.E. Gu, S. Lee, C.M. Stafford, J.S. Lee, W. Choi, B.Y. Kim, K.Y. Baek, E.P. Chan, J.Y. Chung, J. Bang, J.H. Lee, Molecular layer-by-layer assembled thin-film composite membranes for water desalination, Adv. Mater. 25 (34) (2013) 4778–4782. [66] P.M. Johnson, J. Yoon, J.Y. Kelly, J.A. Howarter, C.M. Stafford, Molecular layer-by-layer deposition of highly crosslinked polyamide films, J. Polym. Sci. B Polym. Phys. 50 (3) (2012) 168–173. [67] H.C. Yang, J.W. Hou, V. Chen, Z.K. Xu, Janus membranes: Exploring duality for advanced separation, Angew. Chem. Int. Ed. 55 (43) (2016) 13398–13407. [68] S. Jiang, Q. Chen, M. Tripathy, E. Luijten, K.S. Schweizer, S. Granick, Janus particle synthesis and assembly, Adv. Mater. 22 (10) (2010) 1060–1071. [69] X.Q. Feng, D.L. Peng, J.Y. Zhu, Y. Wang, Y.T. Zhang, Recent advances of loose nanofiltration membranes for dye/salt separation, Sep. Purif. Technol. 285 (2022) 120228. [70] Z.H. Si, Z. Wang, D. Cai, G.Z. Li, S.F. Li, P.Y. Qin, A high-permeance organic solvent nanofiltration membrane via covalently bonding mesoporous MCM-41 with polyimide, Sep. Purif. Technol. 241 (2020) 116545. [71] Y.L. Liu, X.M. Wang, X.Q. Gao, J.F. Zheng, J. Wang, A. Volodin, Y.F. Xie, X. Huang, B. van der Bruggen, J.Y. Zhu, High-performance thin film nanocomposite membranes enabled by nanomaterials with different dimensions for nanofiltration, J. Membr. Sci. 596 (2020) 117717. [72] H.W. Fan, M.H. Peng, I. Strauss, A. Mundstock, H. Meng, J. Caro, High-flux vertically aligned 2D covalent organic framework membrane with enhanced hydrogen separation, J. Am. Chem. Soc. 142 (15) (2020) 6872–6877. [73] Y. Mansourpanah, A. Rahimpour, M. Tabatabaei, L. Bennett, Self-antifouling properties of magnetic Fe2O3/SiO2-modified poly(piperazine amide) active layer for desalting of water: Characterization and performance, Desalination 419 (2017) 79–87. [74] X.D. You, H. Wu, Y.L. Su, J.Q. Yuan, R.N. Zhang, Q.Q. Yu, M.Y. Wu, Z.Y. Jiang, X.Z. Cao, Precise nanopore tuning for a high-throughput desalination membrane via co-deposition of dopamine and multifunctional POSS, J. Mater. Chem. A 6 (27) (2018) 13191–13202. [75] R.N. Zhang, Y.F. Li, Y.L. Su, X.T. Zhao, Y.N. Liu, X.C. Fan, T.Y. Ma, Z.Y. Jiang, Engineering amphiphilic nanofiltration membrane surfaces with a multi-defense mechanism for improved antifouling performances, J. Mater. Chem. A 4 (20) (2016) 7892–7902. [76] X.Z. Wei, S.X. Wang, Y.Y. Shi, H. Xiang, J.Y. Chen, Application of positively charged composite hollow-fiber nanofiltration membranes for dye purification, Ind. Eng. Chem. Res. 53 (36) (2014) 14036–14045. [77] P.L. Chen, X. Ma, Z.X. Zhong, F. Zhang, W.H. Xing, Y.Q. Fan, Performance of ceramic nanofiltration membrane for desalination of dye solutions containing NaCl and Na2SO4, Desalination 404 (2017) 102–111. [78] L. Fan, Q. Zhang, Z. Yang, R.N. Zhang, Y.N. Liu, M.R. He, Z.Y. Jiang, Y.L. Su, Improving permeation and antifouling performance of polyamide nanofiltration membranes through the incorporation of arginine, ACS Appl. Mater. Interfaces 9 (15) (2017) 13577–13586. [79] X.Q. Cheng, Y. Qin, Y.Y. Ye, X.Y. Chen, K. Wang, Y.J. Zhang, A. Figoli, E. Drioli, Finely tailored pore structure of polyamide nanofiltration membranes for highly-efficient application in water treatment, Chem. Eng. J. 417 (2021) 127976. |