[1] Q.T. Liu, X.H. Wang, X.X. Zhang, Z.W. Ling, W.Z. Wu, X.D. Fu, R. Zhang, S.F. Hu, X. Li, F. Zhao, X.J. Bao, Polyethyleneimine-filled sepiolite nanorods-embedded poly (2, 5-benzimidazole) composite membranes for wide-temperature PEMFCs, J. Clean. Prod. 359(2022)131977. [2] S. Ali Atyabi, E. Afshari, Three-dimensional multiphase model of proton exchange membrane fuel cell with honeycomb flow field at the cathode side, J. Clean. Prod. 214(2019)738-748. [3] A. Iranzo, C.H. Arredondo, A.M. Kannan, F. Rosa, Biomimetic flow fields for proton exchange membrane fuel cells:a review of design trends, Energy 190(2020)116435. [4] H. Kahraman, M.F. Orhan, Flow field bipolar plates in a proton exchange membrane fuel cell:analysis&modeling, Energy Convers. Manag. 133(2017)363-384. [5] Z.M. Wan, W.X. Quan, C. Yang, H.Z. Yan, X. Chen, T.M. Huang, X.D. Wang, S. Chan, Optimal design of a novel M-like channel in bipolar plates of proton exchange membrane fuel cell based on minimum entropy generation, Energy Convers. Manag. 205(2020)112386. [6] X.D. Wang, W.M. Yan, Y.Y. Duan, F.B. Weng, G.B. Jung, C.Y. Lee, Numerical study on channel size effect for proton exchange membrane fuel cell with serpentine flow field, Energy Convers. Manag. 51(5)(2010)959-968. [7] D.H. Chang, S.Y. Wu, The effects of channel depth on the performance of miniature proton exchange membrane fuel cells with serpentine-type flow fields, Int. J. Hydrog. Energy 40(35)(2015)11659-11667. [8] B. Kim, Y. Lee, A. Woo, Y. Kim, Effects of cathode channel size and operating conditions on the performance of air-blowing PEMFCs, Appl. Energy 111(2013)441-448. [9] Y. Wu, J.I.S. Cho, T.P. Neville, Q. Meyer, R. Ziesche, P. Boillat, M. Cochet, P.R. Shearing, D.J.L. Brett, Effect of serpentine flow-field design on the water management of polymer electrolyte fuel cells:an in-operando neutron radiography study, J. Power Sources 399(2018)254-263. [10] Z.F. Xia, H.C. Chen, T. Zhang, P.C. Pei, Effect of channel-rib width ratio and relative humidity on performance of a single serpentine PEMFC based on electrochemical impedance spectroscopy, Int. J. Hydrog. Energy 47(26)(2022)13076-13086. [11] D.K. Qiu, L.F. Peng, J.Y. Tang, X.M. Lai, Numerical analysis of air-cooled proton exchange membrane fuel cells with various cathode flow channels, Energy 198(2020)117334. [12] J. Shen, Z.K. Tu, S.H. Chan, Performance enhancement in a proton exchange membrane fuel cell with a novel 3D flow field, Appl. Therm. Eng. 164(2020)114464. [13] J.K. Kuo, T.H. Yen, C.K. Chen, Three-dimensional numerical analysis of PEM fuel cells with straight and wave-like gas flow fields channels, J. Power Sources 177(1)(2008)96-103. [14] J. Shen, Z.K. Tu, S.H. Chan, Enhancement of mass transfer in a proton exchange membrane fuel cell with blockage in the flow channel, Appl. Therm. Eng. 149(2019)1408-1418. [15] X.F. Wang, Y.Z. Qin, S.Y. Wu, X. Shangguan, J.F. Zhang, Y. Yin, Numerical and experimental investigation of baffle plate arrangement on proton exchange membrane fuel cell performance, J. Power Sources 457(2020)228034. [16] H. Heidary, M.J. Kermani, A.K. Prasad, S.G. Advani, B. Dabir, Numerical modelling of in-line and staggered blockages in parallel flowfield channels of PEM fuel cells, Int. J. Hydrog. Energy 42(4)(2017)2265-2277. [17] Y. Wang, Z.Y. Sun, L. Yang, Enhancement effects of the obstacle arrangement and gradient height distribution in serpentine flow-field on the performances of a PEMFC, Energy Convers. Manag. 252(2022)115077. [18] A.A. Ebrahimzadeh, I. Khazaee, A. Fasihfar, Numerical investigation of dimensions and arrangement of obstacle on the performance of PEM fuel cell, Heliyon 4(11)(2018) e00974. [19] H. Chen, H. Guo, F. Ye, C.F. Ma, A numerical study of baffle height and location effects on mass transfer of proton exchange membrane fuel cells with orientated-type flow channels, Int. J. Hydrog. Energy 46(10)(2021)7528-7545. [20] S.W. Perng, H.W. Wu, A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEMFC, Appl. Energy 143(2015)81-95. [21] Y.L. Wang, C. Guan, P.H. Zhang, T.T. Zhu, S.X. Wang, Y. Zhu, X.D. Wang, Optimal design of a cathode flow field with a new arrangement of baffle plates for a high clean power generation of a polymer electrolyte membrane fuel cell, J. Clean. Prod. 375(2022)134187. [22] P.C. Dong, G.N. Xie, M. Ni, The mass transfer characteristics and energy improvement with various partially blocked flow channels in a PEM fuel cell, Energy 206(2020)117977. [23] H.W. Li, J.N. Liu, Y. Yang, W.X. Fan, G.L. Lu, Research on mass transport characteristics and net power performance under different flow channel streamlined imitated water-drop block arrangements for proton exchange membrane fuel cell, Energy 251(2022)123983. [24] S.W. Perng, H.W. Wu, Non-isothermal transport phenomenon and cell performance of a cathodic PEM fuel cell with a baffle plate in a tapered channel, Appl. Energy 88(1)(2011)52-67. [25] S.W. Perng, H.W. Wu, R.H. Wang, Effect of modified flow field on non-isothermal transport characteristics and cell performance of a PEMFC, Energy Convers. Manag. 80(2014)87-96. [26] H. Heidary, M.J. Kermani, B. Dabir, Influences of bipolar plate channel blockages on PEM fuel cell performances, Energy Convers. Manag. 124(2016)51-60. [27] W.K. Li, Q.L. Zhang, C. Wang, X.H. Yan, S.Y. Shen, G.F. Xia, F.J. Zhu, J.L. Zhang, Experimental and numerical analysis of a three-dimensional flow field for PEMFCs, Appl. Energy 195(2017)278-288. [28] A. Hamrang, M. Abdollahzadeh, M.J. Kermani, S.M. Rahgoshay, Numerical simulation of the PEM fuel cell performance enhancement by various blockage arrangement of the cathode serpentine gas flow channel outlets/inlets, Int. J. Heat Mass Transf. 186(2022)122475. [29] K.N. Xiong, W. Wu, S.F. Wang, L. Zhang, Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell:a review, Appl. Energy 301(2021)117443. [30] H. Hazar, M. Yilmaz, H. Sevinc, The effects of different flow field patterns on polymer electrolyte membrane fuel cell performance, Energy Convers. Manag. 248(2021)114818. [31] H. Guo, H. Chen, F. Ye, C.F. Ma, Baffle shape effects on mass transfer and power loss of proton exchange membrane fuel cells with different baffled flow channels, Int. J. Energy Res. 43(7)(2019)2737-2755. [32] Y. Li, F. Yuan, R.G. Weng, F. Xi, W. Liu, Variational-principle-optimized porosity distribution in gas diffusion layer of high-temperature PEM fuel cells, Energy 235(2021)121350. [33] Y.B. Zhou, K. Jiao, Q. Du, Y. Yin, X.G. Li, Gas diffusion layer deformation and its effect on the transport characteristics and performance of proton exchange membrane fuel cell, Int. J. Hydrog. Energy 38(29)(2013)12891-12903. [34] S.W. Perng, H.W. Wu, Y.B. Chen, Y.K. Zeng, Performance enhancement of a high temperature proton exchange membrane fuel cell by bottomed-baffles in bipolar-plate channels, Appl. Energy 255(2019)113815. [35] V. Jha, R. Hariharan, B. Krishnamurthy, A 3 dimensional numerical model to study the effect of GDL porosity on high temperature PEM fuel cells, Int. J. Heat Mass Transf. 161(2020)120311. [36] Y.H. Cai, D. Wu, J.M. Sun, B. Chen, The effect of cathode channel blockages on the enhanced mass transfer and performance of PEMFC, Energy 222(2021)119951. [37] S.Y. Zhang, Z.G. Qu, H.T. Xu, F.K. Talkhoncheh, S. Liu, Q. Gao, A numerical study on the performance of PEMFC with wedge-shaped fins in the cathode channel, Int. J. Hydrog. Energy 46(54)(2021)27700-27708. [38] Y. Yin, X.F. Wang, J.F. Zhang, X. Shangguan, Y.Z. Qin, Influence of sloping baffle plates on the mass transport and performance of PEMFC, Int. J. Energy Res. 43(7)(2019)2643-2655. [39] A.A. Ebrahimzadeh, I. Khazaee, A. Fasihfar, Experimental and numerical investigation of obstacle effect on the performance of PEM fuel cell, Int. J. Heat Mass Transf. 141(2019)891-904. [40] Y. Kerkoub, A. Benzaoui, F. Haddad, Y.K. Ziari, Channel to rib width ratio influence with various flow field designs on performance of PEM fuel cell, Energy Convers. Manag. 174(2018)260-275. [41] M. Bilgili, M. Bosomoiu, G. Tsotridis, Gas flow field with obstacles for PEM fuel cells at different operating conditions, Int. J. Hydrog. Energy 40(5)(2015)2303-2311. [42] X. Chen, Y. Chen, Q. Liu, J.H. Xu, Q.X. Liu, W.B. Li, Y. Zhang, Z.M. Wan, X.D. Wang, Performance study on a stepped flow field design for bipolar plate in PEMFC, Energy Rep. 7(2021)336-347. [43] H.C. Liu, W.M. Yang, J. Tan, Y. An, L.S. Cheng, Numerical analysis of parallel flow fields improved by micro-distributor in proton exchange membrane fuel cells, Energy Convers. Manag. 176(2018)99-109. |