[1] J.W. Zhou, G.C. Du, J. Chen, Novel fermentation processes for manufacturing plant natural products, Curr. Opin. Biotechnol. 25 (2014) 17-23. [2] Sun W, Zhao Y J, Li C. De Novo Synthesis of Plant Natural Products in Yeast, Yeasts in Biotechnology, IntechOpen, 2019, DOI: 10.5772/intechopen.85846. [3] A. Cravens, J. Payne, C.D. Smolke, Synthetic biology strategies for microbial biosynthesis of plant natural products, Nat. Commun. 10 (1) (2019) 2142. [4] Y. Chen, J. Nielsen, Biobased organic acids production by metabolically engineered microorganisms, Curr. Opin. Biotechnol. 37 (2016) 165-172. [5] S.Y. Lee, H.U. Kim, Systems strategies for developing industrial microbial strains, Nat. Biotechnol. 33 (10) (2015) 1061-1072. [6] T.T. Liu, L. Sun, C. Zhang, Y.F. Liu, J.H. Li, G.C. Du, X.Q. Lv, L. Liu, Combinatorial metabolic engineering and process optimization enables highly efficient production of L-lactic acid by acid-tolerant Saccharomyces cerevisiae, Bioresour. Technol. 379 (2023) 129023. [7] L. Sun, Q.W. Zhang, X. Kong, Y.F. Liu, J.H. Li, G.C. Du, X.Q. Lv, R. Ledesma-Amaro, J. Chen, L. Liu, Highly efficient neutralizer-free l-malic acid production using engineered Saccharomyces cerevisiae, Bioresour. Technol. 370 (2023) 128580. [8] Y. Lee, O. Nasution, Y.M. Lee, E. Kim, W. Choi, W. Kim, Overexpression of PMA1 enhances tolerance to various types of stress and constitutively activates the SAPK pathways in Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol. 101 (1) (2017) 229-239. [9] X.Q. Lv, K. Jin, Y. Yi, L.G. Song, X. Xiu, Y.F. Liu, J.H. Li, G.C. Du, J. Chen, L. Liu, Analysis of acid-tolerance mechanism based on membrane microdomains in Saccharomyces cerevisiae, Microb. Cell Fact. 22 (1) (2023) 180. [10] W.Y. Cui, J. Liu, L. Zhu, Mandlaa, Z.Y. Sun, Z.J. Chen, Studies on acid resistance mechanism of Saccharomyces cerevisiae HJ-U17 during fruit fermentation with high acidity, LWT 215 (2025) 117243. [11] R. Pereira, E.T. Mohamed, M.S. Radi, M.J. Herrgard, A.M. Feist, J. Nielsen, Y. Chen, Elucidating aromatic acid tolerance at low pH in Saccharomyces cerevisiae using adaptive laboratory evolution, Proc. Natl. Acad. Sci. USA 117 (45) (2020) 27954-27961. [12] T.T. Tian, D.H. Wu, C.T. Ng, H. Yang, J.Y. Sun, J.M. Liu, J. Lu, A multiple-step strategy for screening Saccharomyces cerevisiae strains with improved acid tolerance and aroma profiles, Appl. Microbiol. Biotechnol. 104 (7) (2020) 3097-3107. [13] D.A. Bryant, N.U. Frigaard, Prokaryotic photosynthesis and phototrophy illuminated, Trends Microbiol. 14 (11) (2006) 488-496. [14] O.M. Finkel, O. Beja, S. Belkin, Global abundance of microbial rhodopsins, ISME J. 7 (2) (2013) 448-451. [15] L. Gomez-Consarnau, J.A. Raven, N.M. Levine, L.S. Cutter, D. Wang, B. Seegers, J. Aristegui, J.A. Fuhrman, J.M. Gasol, S.A. Sanudo-Wilhelmy, Microbial rhodopsins are major contributors to the solar energy captured in the sea, Sci Adv 5 (8) (2019) eaaw8855. [16] I. Gushchin, V. Shevchenko, V. Polovinkin, K. Kovalev, A. Alekseev, E. Round, V. Borshchevskiy, T. Balandin, A. Popov, T. Gensch, C. Fahlke, C. Bamann, D. Willbold, G. Buldt, E. Bamberg, V. Gordeliy, Crystal structure of a light-driven sodium pump, Nat. Struct. Mol. Biol. 22 (2015) 390-395. [17] O. Volkov, K. Kovalev, V. Polovinkin, V. Borshchevskiy, C. Bamann, R. Astashkin, E. Marin, A. Popov, T. Balandin, D. Willbold, G. Buldt, E. Bamberg, V. Gordeliy, Structural insights into ion conduction by channelrhodopsin 2, Science 358 (6366) (2017) eaan8862. [18] H. Kandori, Biophysics of rhodopsins and optogenetics, Biophys. Rev. 12 (2) (2020) 355-361. [19] O.P. Ernst, D.T. Lodowski, M. Elstner, P. Hegemann, L.S. Brown, H. Kandori, Microbial and animal rhodopsins: structures, functions, and molecular mechanisms, Chem. Rev. 114 (1) (2014) 126-163. [20] E.G. Govorunova, O.A. Sineshchekov, H. Li, J.L. Spudich, Microbial rhodopsins: diversity, mechanisms, and optogenetic applications, Annu. Rev. Biochem. 86 (2017) 845-872. [21] S. Mukherjee, P. Hegemann, M. Broser, Enzymerhodopsins: novel photoregulated catalysts for optogenetics, Curr. Opin. Struct. Biol. 57 (2019) 118-126. [22] S. Berhanu, T. Ueda, Y. Kuruma, Artificial photosynthetic cell producing energy for protein synthesis, Nat. Commun. 10 (1) (2019) 1325. [23] J.M. Walter, D. Greenfield, C. Bustamante, J. Liphardt, Light-powering escherichia coli with proteorhodopsin, Proc. Natl. Acad. Sci. USA 104 (7) (2007) 2408-2412. [24] J.Y. Kim, B.H. Jo, Y. Jo, H.J. Cha, Improved production of biohydrogen in light-powered Escherichia coli by co-expression of proteorhodopsin and heterologous hydrogenase, Microb. Cell Fact. 11 (2012) 2. [25] Y. Toya, Y. Hirono-Hara, H. Hirayama, K. Kamata, R. Tanaka, M. Sano, S. Kitamura, K. Otsuka, R. Abe-Yoshizumi, S.P. Tsunoda, H. Kikukawa, H. Kandori, H. Shimizu, F. Matsuda, J. Ishii, K.Y. Hara, Optogenetic reprogramming of carbon metabolism using light-powering microbial proton pump systems, Metab Eng 72 (2022) 227-236. [26] M. Sano, R. Tanaka, K. Kamata, Y. Hirono-Hara, J. Ishii, F. Matsuda, K.Y. Hara, H. Shimizu, Y. Toya, Conversion of mevalonate to isoprenol using light energy in Escherichia coli without consuming sugars for ATP supply, ACS Synth. Biol. 11 (12) (2022) 3966-3972. [27] V. Hildebrandt, K. Fendler, J. Heberle, A. Hoffmann, E. Bamberg, G. Buldt, Bacteriorhodopsin expressed in Schizosaccharomyces pombe pumps protons through the plasma membrane, Proc. Natl. Acad. Sci. USA 90 (8) (1993) 3578-3582. [28] A. Peterson, C. Baskett, W.C. Ratcliff, A. Burnetti, Transforming yeast into a facultative photoheterotroph via expression of vacuolar rhodopsin, Curr. Biol. 34 (3) (2024) 648-654.e3. [29] P.A. Davison, W. Tu, J. Xu, S. Della Valle, I.P. Thompson, C.N. Hunter, W.E. Huang, Engineering a rhodopsin-based photo-electrosynthetic system in bacteria for CO2 fixation, ACS Synth. Biol. 11 (11) (2022) 3805-3816. [30] E.C. Hurt, B. Pesold-Hurt, K. Suda, W. Oppliger, G. Schatz, The first twelve amino acids (less than half of the pre-sequence) of an imported mitochondrial protein can direct mouse cytosolic dihydrofolate reductase into the yeast mitochondrial matrix, EMBO J. 4 (8) (1985) 2061-2068. [31] A. Reider Apel, L. d’Espaux, M. Wehrs, D. Sachs, R.A. Li, G.J. Tong, M. Garber, O. Nnadi, W. Zhuang, N.J. Hillson, J.D. Keasling, A. Mukhopadhyay, A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae, Nucleic Acids Res 45 (1) (2017) 496-508. [32] C. Dong, Z.W. Shi, L. Huang, H.M. Zhao, Z.N. Xu, J.Z. Lian, Cloning and characterization of a panel of mitochondrial targeting sequences for compartmentalization engineering in Saccharomyces cerevisiae, Biotechnol. Bioeng. 118 (11) (2021) 4269-4277. [33] F. Cymer, G. von Heijne, S.H. White, Mechanisms of integral membrane protein insertion and folding, J. Mol. Biol. 427 (5) (2015) 999-1022. [34] V.D.V., B.M.M., N.I.A., K.M.A., I.B.N, Impact of high light on reactive oxygen species production within photosynthetic biological membranes, J. Biol. Life Sci. 6 (2) (2015) 50. |