[1] T. Hudlicky, J.W. Reed, Applications of biotransformations and biocatalysis to complexity generation in organic synthesis, Chem. Soc. Rev. 38(11) (2009) 3117-3132. [2] J. Wachtmeister, D. Rother, Recent advances in whole cell biocatalysis techniques bridging from investigative to industrial scale, Curr. Opin. Biotechnol. 42(2016) 169-177. [3] K.B. Borges, W.D.S. Borges, R. Durán-Patrón, M.T. Pupo, P.S. Bonato, I.G. Collado, Stereoselective biotransformations using fungi as biocatalysts, Tetrahedron:Asymmetry 20(4) (2009) 385-397. [4] U.T. Bornscheuer, G.W. Huisman, R.J. Kazlauskas, S. Lutz, J.C. Moore, K. Robins, Engineering the third wave of biocatalysis, Nature 485(7397) (2012) 185. [5] C.M. Clouthier, J.N. Pelletier, Expanding the organic toolbox:A guide to integrating biocatalysis in synthesis, Chem. Soc. Rev. 41(4) (2012) 1585-1605. [6] J.H. Tao, J.H. Xu, Biocatalysis in development of green pharmaceutical processes, Curr. Opin. Chem. Biol. 13(1) (2009) 43-50. [7] M.T. Reetz, Laboratory evolution of stereoselective enzymes:A prolific source of catalysts for asymmetric reactions, Angew. Chem. Int. Ed. 50(1) (2011) 138-174. [8] N.Z. Burns, P.S. Baran, R.W. Hoffmann, Redox economy in organic synthesis, Angew. Chem. Int. Ed. 48(16) (2009) 2854-2867. [9] J.J. Dong, E. Fernández-Fueyo, F. Hollmann, C.E. Paul, M. Pesic, S. Schmidt, Y.H. Wang, S. Younes, W.Y. Zhang, Biocatalytic oxidation reactions:A chemist's perspective, Angew. Chem. Int. Ed. 57(30) (2018) 9238-9261. [10] F. Hollmann, I.W.C.E. Arends, D. Holtmann, Enzymatic reductions for the chemist, Green Chem. 13(9) (2011) 2285-2314. [11] A.T. Martínez, F.J. Ruiz-Dueñas, S. Camarero, A. Serrano, D. Linde, H. Lund, J. Vind, M. Tovborg, O.M. Herold-Majumdar, M. Hofrichter, C. Liers, R. Ullrich, K. Scheibner, G. Sannia, A. Piscitelli, C. Pezzella, M.E. Sener, S. Kılıç, W.J.H. van Berkel, V. Guallar, M.F. Lucas, R. Zuhse, R. Ludwig, F. Hollmann, E. Fernández-Fueyo, E. Record, C.B. Faulds, M. Tortajada, I. Winckelmann, J.-A. Rasmussen, M. Gelo-Pujic, A. Gutiérrez, J.C. del Río, J. Rencoret, M. Alcalde, Oxidoreductases on their way to industrial biotransformations, Biotechnol. Adv. 35(6) (2017) 815-831. [12] C.K. Prier, B. Kosjek, Recent preparative applications of redox enzymes, Curr. Opin. Chem. Biol. 49(2019) 105-112. [13] G.W. Huisman, J. Liang, A. Krebber, Practical chiral alcohol manufacture using ketoreductases, Curr. Opin. Chem. Biol. 14(2) (2010) 122-129. [14] E.L. Noey, N. Tibrewal, G. Jiménez-Osés, S. Osuna, J. Park, C.M. Bond, D. Cascio, J. Liang, X.Y. Zhang, G.W. Huisman, Y. Tang, K.N. Houk, Origins of stereoselectivity in evolved ketoreductases, Proc. Natl. Acad. Sci. U. S. A. 112(51) (2015) E7065-E7072. [15] T. Matsuda, R. Yamanaka, K. Nakamura, Recent progress in biocatalysis for asymmetric oxidation and reduction, Tetrahedron Asymmetry 20(5) (2009) 513-557. [16] J. Liang, E. Mundorff, R. Voladri, S. Jenne, L. Gilson, A. Conway, A. Krebber, J. Wong, G. Huisman, S. Truesdell, J. Lalonde, Highly enantioselective reduction of a small heterocyclic ketone:Biocatalytic reduction of tetrahydrothiophene-3-one to the corresponding (R)-alcohol, Org. Process. Res. Dev. 14(1) (2010) 188-192. [17] B. Kosjek, J. Nti-Gyabaah, K. Telari, L. Dunne, J.C. Moore, Preparative asymmetric synthesis of 4,4-dimethoxytetrahydro-2H-pyran-3-ol with a ketone reductase and in situ cofactor recycling using glucose dehydrogenase, Org. Process. Res. Dev. 12(4) (2008) 584-588. [18] W. Helbert, L. Poulet, S. Drouillard, S. Mathieu, M. Loiodice, M. Couturier, V. Lombard, N. Terrapon, J. Turchetto, R. Vincentelli, B. Henrissat, Discovery of novel carbohydrate-active enzymes through the rational exploration of the protein sequences space, Proc. Natl. Acad. Sci. U. S. A. 116(13) (2019) 6063-6068. [19] K. Balke, M. Kadow, H. Mallin, S. Sass, U.T. Bornscheuer, Discovery, application and protein engineering of Baeyer-Villiger monooxygenases for organic synthesis, Org. Biomol. Chem. 10(31) (2012) 6249-6265. [20] H. Leisch, K. Morley, P.C.K. Lau, Baeyer-Villiger monooxygenases:More than just green chemistry, Chem. Rev. 111(7) (2011) 4165-4222. [21] F. Leipold, R. Wardenga, U.T. Bornscheuer, Cloning, expression and characterization of a eukaryotic cycloalkanone monooxygenase from Cylindrocarpon radicicola ATCC 11011, Appl. Microbiol. Biotechnol. 94(3) (2012) 705-717. [22] F.M. Ferroni, M.S. Smit, D.J. Opperman, Functional divergence between closely related Baeyer-Villiger monooxygenases from Aspergillus flavus, J. Mol. Catal. B Enzym. 107(2014) 47-54. [23] M.L. Mascotti, M.J. Ayub, H. Dudek, M.K. Sanz, M.W. Fraaije, Cloning, overexpression and biocatalytic exploration of a novel Baeyer-Villiger monooxygenase from Aspergillus fumigatus Af293, AMB Express 3(1) (2013) 33. [24] L. Butinar, M. Mohorčič, V. Deyris, K. Duquesne, G. Iacazio, M. Claeys-Bruno, J. Friedrich, V. Alphand, Prevalence and specificity of Baeyer-Villiger monooxygenases in fungi, Phytochemistry 117(2015) 144-153. [25] S. Bordewick, A. Beier, K. Balke, U.T. Bornscheuer, Baeyer-Villiger monooxygenases from Yarrowia lipolytica catalyze preferentially sulfoxidations, Enzym. Microb. Technol. 109(2018) 31-42. [26] F. Hollmann, I.W.C.E. Arends, K. Buehler, Biocatalytic redox reactions for organic synthesis:Nonconventional regeneration methods, ChemCatChem 2(7) (2010) 762-782. [27] C.C.C.R. de Carvalho, Whole cell biocatalysts:Essential workers from nature to the industry, Microb. Biotechnol. 10(2) (2017) 250-263. [28] S. Wu, Z. Li, Whole-cell cascade biotransformations for one-pot multistep organic synthesis, ChemCatChem 10(10) (2018) 2164-2178. [29] A.T. Li, A. Ilie, Z.Z. Sun, R. Lonsdale, J.H. Xu, M.T. Reetz, Whole-cell-catalyzed multiple regio- and stereoselective functionalizations in cascade reactions enabled by directed evolution, Angew. Chem. Int. Ed. 55(39) (2016) 12026-12029. [30] L.P. Wackett, Microbial strain collections and information:An annotated selection of World Wide Web sites relevant to the topics in microbial biotechnology, Microb. Biotechnol. 7(4) (2014) 371-372. [31] L.H. Wu, Q.L. Sun, P. Desmeth, H. Sugawara, Z.H. Xu, K. McCluskey, D. Smith, V. Alexander, N. Lima, M. Ohkuma, V. Robert, Y.G. Zhou, J.H. Li, G.M. Fan, S. Ingsriswang, S. Ozerskaya, J.C. Ma, World data centre for microorganisms:an information infrastructure to explore and utilize preserved microbial strains worldwide, Nucleic Acids Res. 45(D1) (2016) D611-D618. [32] T.T. Liu, L.Y. Zhu, Z.P. Zhang, H. Huang, Z.D. Zhang, L. Jiang, Protective role of trehalose during radiation and heavy metal stress in Aureobasidium subglaciale F134, Sci. Rep. 7(1) (2017) 17586. [33] Z.D. Zhang, Y.Q. Xie, W. Wang, M.Y. Gu, J. Zhu, Q.Y. Tang, S.Q. Song, Y.H. Shi, Isolation and character of radio-resistant black yeast-like fungus, Microbiol. China 39(5) (2012) 724-731. [34] Z.M. Chi, F. Wang, Z. Chi, L.X. Yue, G.L. Liu, T. Zhang, Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast, Appl. Microbiol. Biotechnol. 82(5) (2009) 793-804. [35] S. Prasongsuk, P. Lotrakul, I. Ali, W. Bankeeree, H. Punnapayak, The current status of Aureobasidium pullulans in biotechnology, Folia Microbiol. 63(2) (2018) 129-140. [36] M. Turk, C. Gostinčar, Glycerol metabolism genes in Aureobasidium pullulans and Aureobasidium subglaciale, Fungal Biol. 122(1) (2018) 63-73. [37] J.V. Comasseto, L.H. Andrade, Á.T. Omori, L.F. Assis, A.L.M. Porto, Deracemization of aryl ethanols and reduction of acetophenones by whole fungal cells of Aspergillus terreus CCT 4083, A. terreus CCT 3320 and Rhizopus oryzae CCT 4964, J. Mol. Catal. B:Enzym. 29(1) (2004) 55-61. [38] M. Fujii, H. Akita, Y. Ida, T. Nakagawa, K. Nakamura, Control of chemoselectivity of microbial reaction with resin adsorbent:Enhancement of Baeyer-Villiger oxidation over reduction, Appl. Microbiol. Biotechnol. 77(1) (2007) 45-51. [39] E. Ricca, B. Brucher, J.H. Schrittwieser, Multi-enzymatic cascade reactions:Overview and perspectives, Adv. Synth. Catal. 353(13) (2011) 2239-2262. [40] H.B. Bode, B. Bethe, R. Höfs, A. Zeeck, Big effects from small changes:Possible ways to explore nature's chemical diversity, ChemBioChem 3(7) (2002) 619-627. [41] A.J. Lambo, T.R. Patel, Temperature-dependent biotransformation of 2,4'-temperatures prevent excess accumulation of problematic meta-cleavage products, Lett. Appl. Microbiol. 44(4) (2007) 447-453. [42] M. Basen, J.S. Sun, M.W.W. Adams, Engineering a hyperthermophilic archaeon for temperature-dependent product formation, mBio 3(2) (2012), e00053-12. [43] J. Ni, Y.Y. Gao, F. Tao, H.Y. Liu, P. Xu, Temperature-directed biocatalysis for the sustainable production of aromatic aldehydes or alcohols, Angew. Chem. Int. Ed. 57(5) (2018) 1214-1217. [44] C. Gostinčar, R.A. Ohm, T. Kogej, S. Sonjak, M. Turk, J. Zajc, P. Zalar, M. Grube, H. Sun, J. Han, A. Sharma, J. Chiniquy, C.Y. Ngan, A. Lipzen, K. Barry, I.V. Grigoriev, N. GundeCimerman, Genome sequencing of four Aureobasidium pullulans varieties:biotechnological potential, stress tolerance, and description of new species, BMC Genomics 15(2014) 549. [45] J.A. Baross, R.Y. Morita, Microbial Life in Extreme Environments, Acad. Press, London, 19789-71. [46] D. Pollard, M. Truppo, J. Pollard, C.Y. Chen, J. Moore, Effective synthesis of (S)-3,5-bistrifluoromethylphenyl ethanol by asymmetric enzymatic reduction, Tetrahedron Asymmetry 17(4) (2006) 554-559. |