中国化学工程学报 ›› 2021, Vol. 29 ›› Issue (2): 146-167.DOI: 10.1016/j.cjche.2020.12.016
• Biocatalysis and Bioreactor Engineering • 上一篇 下一篇
Mengjiao Xu, Zhuotao Tan, Chenjie Zhu, Wei Zhuang, Hanjie Ying, Pingkai Ouyang
收稿日期:
2020-09-29
修回日期:
2020-12-17
出版日期:
2021-02-28
发布日期:
2021-05-15
通讯作者:
Chenjie Zhu, Hanjie Ying
基金资助:
Mengjiao Xu, Zhuotao Tan, Chenjie Zhu, Wei Zhuang, Hanjie Ying, Pingkai Ouyang
Received:
2020-09-29
Revised:
2020-12-17
Online:
2021-02-28
Published:
2021-05-15
Contact:
Chenjie Zhu, Hanjie Ying
Supported by:
摘要: Chemoenzymatic catalysis can give full play to the advantages of versatile reactivity of chemocatalysis and excellent chemo-, regio-, and stereoselectivities of biocatalysis. These chemoenzymatic methods can not only save resource, cost, and operating time but also reduce the number of reaction steps, and avoid separating unstable intermediates, leading to the generation of more products under greener circumstances and thereby playing an indispensable role in the fields of medicine, materials and fine chemicals. Although incompatible challenges between chemocatalyst and biocatalyst remain, strategies such as biphasic system, artificial metalloenzymes, immobilization or supramolecular host, and protein engineering have been designed to overcome these issues. In this review, chemoenzymatic catalysis according to different chemocatalysis types was classifiably described, and in particular, the classic dynamic kinetic resolutions (DKR) and cofactor regeneration were summarized. Finally, the bottlenecks and development of chemoenzymatic catalysis were summarized, and future development was prospected.
Mengjiao Xu, Zhuotao Tan, Chenjie Zhu, Wei Zhuang, Hanjie Ying, Pingkai Ouyang. Recent advance of chemoenzymatic catalysis for the synthesis of chemicals: Scope and challenge[J]. 中国化学工程学报, 2021, 29(2): 146-167.
Mengjiao Xu, Zhuotao Tan, Chenjie Zhu, Wei Zhuang, Hanjie Ying, Pingkai Ouyang. Recent advance of chemoenzymatic catalysis for the synthesis of chemicals: Scope and challenge[J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 146-167.
[1] G.W. Huber, S. Iborra, A. Corma, Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering, Chem. Rev. 106 (2006) 4044–4098. [2] L.T. Mika, E. Cséfalvay, Á. Németh, Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability, Chem. Rev. 118 (2018) 505–613. [3] P.I. Dalko, L. Moisan, In the golden age of organocatalysis, Angew. Chem., Int. Ed. 43 (2004) 5138–5175. [4] M.T. Reetz, Biocatalysis in organic chemistry and biotechnology: past, present, and future, J. Am. Chem. Soc. 135 (2013) 12480–12496. [5] R.A. Sheldon, P.C. Pereira, Biocatalysis engineering: the big picture, Chem. Soc. Rev. 46 (2017) 2678–2691. [6] M. Makkee, A.P.G. Kieboom, H.V. Bekkum, Combined action of enzyme and metal catalyst, applied to the preparation of D-mannitol, J. Chem. Soc., Chem. Commun. 198 (1984) 930–931. [7] J.V. Allen, J.M.J. Williams, Dynamic kinetic resolution with enzyme and palladium combinations, Tetrahedron Lett. 37 (1996) 1859–1862. [8] P.M. Dinh, J.A. Howarth, A.R. Hudnott, J.M.J. Williams, Catalytic racemisation of alcohols: applications to enzymatic resolution reactions, Tetrahedron Lett. 37 (1996) 7623–7626. [9] J. Muschiol, C. Peters, N. Oberleitner, M.D. Mihovilovic, U.T. Bornscheuer, F. Rudroff, Cascade catalysis-strategies and challenges en route to preparative synthetic biology, Chem. Commun. 51 (2015) 5798–5811. [10] J.H. Schrittwieser, S. Velikogne, M. Hall, W. Kroutil, Artificial biocatalytic linear cascades for preparation of organic molecules, Chem. Rev. 118 (2018) 270–348. [11] P. Yao, J. Ren, Q. Wu, D. Zhu, The latest progress and challenges in the research of chemical-biological fusion transformation reaction, Sci. Sin.: Chim. 45 (2015) 479–500. [12] X. Huang, M. Cao, H. Zhao, Integrating biocatalysis with chemocatalysis for selective transformations, Curr. Opin. Chem. Biol. 2020 (2020) 161–170. [13] F. Rudroff, M.D. Mihovilovic, H. Gröger, R. Snajdrova, H. Iding, U.T. Bornscheuer, Opportunities and challenges for combining chemo-and biocatalysis, Nat. Catal. 1 (2018) 12–22. [14] A. Bartoszewicz, N. Ahlsten, B. Martín-matute, Enantioselective synthesis of alcohols and amines by iridium-catalyzed hydrogenation, transfer hydrogenation, and related processes, Chem.-Eur. J. 19 (2013) 7274–7302. [15] Y. Ahn, S. Ko, M. Kim, J. Park, Racemization catalysts for the dynamic kinetic resolution of alcohols and amines, Coord. Chem. Rev. 252 (2008) 647–658. [16] B.M. Trost, M.L. Crawley, Asymmetric transition-metal-catalyzed allylic alkylations: applications in total synthesis, Chem. Rev. 103 (2003) 2921–2943. [17] U.M. Dzhemilev, A.G. Ibragimov, Hydrometallation of unsaturated compounds, ChemInform 40 (2008) 447–489. [18] M. Shibasaki, M. Kanai, Asymmetric synthesis of tertiary alcohols and alphatertiary amines via Cu-catalyzed C-C bond formation to ketones and ketimines, Chem. Rev. 108 (2008) 2853–2873. [19] H. Pellissier, Catalytic non-enzymatic kinetic resolution, Adv. Synth. Catal. 353 (2011) 1613–1666. [20] C.E. Muller, P.R. Schreiner, Organocatalytic enantioselective acyl transfer onto racemic as well as meso alcohols, amines, and thiols, Angew. Chem., Int. Ed. 50 (2011) 6012–6042. [21] M. Breuer, K. Ditrich, T. Habicher, B. Hauer, M. Keßeler, R. Stürmer, T. Zelinski, Industrial methods for the production of optically active intermediates, Angew. Chem., Int. Ed. 43 (2004) 788–824. [22] F.F. Huerta, A.B. Minidis, J. Bäckvall, Racemisation in asymmetric synthesis. Dynamic kinetic resolution and related processes in enzyme and metal catalysis, Chem. Soc. Rev. 30 (2001) 321–331. [23] A. Parvulescu, J. Janssens, J. Vanderleyden, D.D. Vos, Heterogeneous catalysts for racemization and dynamic kinetic resolution of amines and secondary alcohols, Top. Catal. 53 (2010) 931–941. [24] C.C. Gruber, I. Lavandera, K. Faber, W. Kroutil, From a racemate to a single enantiomer: deracemization by stereoinversion, Adv. Synth. Catal. 348 (2006) 1789–1805. [25] R. Marcos, B. Martín-Matute, Combined enzyme and transition-metal catalysis for dynamic kinetic resolutions, Isr. J. Chem. 52 (2012) 639–652. [26] D. Koszelewski, A. Brodzka, A. Żądlo, D. Paprocki, D. Trzepizur, M. Zysk, R. Ostaszewski, Dynamic kinetic resolution of 3-aryl-4-pentenoic acids, ACS Catal. 6 (2016) 3287–3292. [27] A.L.E. Larsson, B.A. Persson, J.E. Bäckvall, Enzymatic resolution of alcohols coupled with ruthenium-catalyzed racemization of the substrate alcohol, Angew. Chem., Int. Ed. 36 (1997) 1211–1212. [28] O. Pàmies, J.E. Bäckvall, Dynamic kinetic resolution of beta-azido alcohols. An efficient route to chiral aziridines and beta-amino alcohols, J. Org. Chem. 66 (2001) 4022–4025. [29] O. Pàmies, J.E. Bäckvall, Chemoenzymatic dynamic kinetic resolution of bhalo alcohols. An efficient route to chiral epoxides, J. Org. Chem. 67 (2002) 9006–9010. [30] K.S. Vallin, D.W. Posaric, Z. Hameršak, M.A. Svensson, A.B. Minidis, Efficient chemoenzymatic dynamic kinetic resolution of 1-heteroaryl ethanols, J. Org. Chem. 74 (2009) 9328–9336. [31] A.L. Fransson, L. Borén, O. Pàmies, J.E. Bäckvall, Kinetic resolution and chemoenzymatic dynamic kinetic resolution of functionalized c-hydroxy amides, J. Org. Chem. 70 (2005) 2582–2587. [32] B.L. Conley, M.K. Pennington-Boggio, E. Boz, T.J. Williams, Discovery, applications, and catalytic mechanisms of Shvo’s catalyst, Chem. Rev. 110 (2010) 2294–2312. [33] J.H. Koh, H.M. Jeong, J. Park, Efficient catalytic racemization of secondary alcohols, Tetrahedron Lett. 39 (1998) 5545–5548. [34] J.H. Koh, H.M. Jung, M. Kim, J. Park, Enzymatic resolution of secondary alcohols coupled with ruthenium-catalyzed racemization without hydrogen mediator, Tetrahedron Lett. 40 (1999) 6281–6284. [35] N.A. Cortez, G. Aguirre, M.P. Hake, R. Somanathan, Ruthenium(II) and rhodium(III) catalyzed asymmetric transfer hydrogenation (ATH) of acetophenone in isopropanol and in aqueous sodium formate using new chiral substituted aromatic monosulfonamide ligands derived from (1R,2R)-diaminocyclohexane, Tetrahedron: Asymmetry 19 (2008) 1304–1309. [36] S. Agrawal, E. Martínez-Castro, R. Marcos, B. Martín-Matute, Readily available ruthenium complex for efficient dynamic kinetic resolution of aromatic ahydroxy ketones, Org. Lett. 16 (2014) 2256–2259. [37] R.M. Haak, F. Berthiol, T. Jerphagnon, A.J. Gayet, C. Tarabiono, C.P. Postema, V. Ritleng, M. Pfeffer, D.B. Janssen, A.J. Minnaard, B.L. Feringa, J.G. Vries, Dynamic kinetic resolution of racemic b-haloalcohols: direct access to enantioenriched epoxides, J. Am. Chem. Soc. 130 (2008) 13508–13509. [38] F.G. Mutti, A. Orthaber, J.H. Schrittwieser, J.G. Vries, R. Pietschnig, W. Kroutil, Simultaneous iridium catalysed oxidation and enzymatic reduction employing orthogonal reagents, Chem. Commun. 46 (2010) 8046–8048. [39] A. Berkessel, M.L. Sebastian-Ibarz, T.N. Müller, Lipase/aluminum-catalyzed dynamic kinetic resolution of secondary alcohols, Angew. Chem., Int. Ed. 45 (2006) 6567–6570. [40] E. Wingstrand, A. Laurell, L. Fransson, K. Hult, C. Moberg, Minor enantiomer recycling: metal catalyst, organocatalyst and biocatalyst working in concert, Chem.-Eur. J. 15 (2009) 12107–12113. [41] S. Akai, R. Hanada, N. Fujiwara, Y. Kita, M. Egi, One-pot synthesis of optically active allyl esters via lipase-vanadium combo catalysis, Org. Lett. 12 (2010) 4900–4903. [42] M. Egi, K. Sugiyama, M. Saneto, R. Hanada, K. Kato, S. Akai, A mesoporoussilica-immobilized oxovanadium cocatalyst for the lipase-catalyzed dynamic kinetic resolution of racemic alcohols, Angew. Chem., Int. Ed. 52 (2013) 3654–3658. [43] S. Wuyts, J. Wahlen, P.A. Jacobs, D.E. De Vos, Heterogeneous vanadium catalysts for racemization and chemoenzymatic dynamic kinetic resolution of benzylic alcohols, Green Chem. 9 (2007) 1104–1108. [44] M.T. Reetz, K. Schimossek, Lipase-catalyzed dynamic kinetic resolution of chiral amines: use of palladium as the racemization catalyst, Chimia 50 (1996) 668–669. [45] A.N. Parvulescu, P.A. Jacobs, D.E. De Vos, Palladium catalysts on alkaline-earth supports for racemization and dynamic kinetic resolution of benzylic amines, Chem.-Eur. J. 13 (2007) 2034–2043. [46] A.N. Parvulescu, D.D. Vos, P. Jacobs, Efficient dynamic kinetic resolution of secondary amines with Pd on alkaline earth salts and a lipase, Chem. Commun. 42 (2005) 5307–5309. [47] L.H. Andrade, A.V. Silva, E.C. Pedrozo, First dynamic kinetic resolution of selenium-containing chiral amines catalyzed by palladium (Pd/BaSO4) and Candida antartica lipase (CAL-B), Tetrahedron Lett. 50 (2009) 4331–4334. [48] O. Pàmies, A.H. Éll, J.S.M. Samec, N. Hermanns, J.-E. Bäckvall, An efficient and mild ruthenium-catalyzed racemization of amines: application to the synthesis of enantiomerically pure amines, Tetrahedron Lett. 43 (2002) 4699–4702. [49] V. Köhler, Y.M. Wilson, M. Dürrenberger, D. Ghislieri, E. Churakova, T. Quinto, L. Knörr, D. Häussinger, F. Hollmann, N.J. Turner, T.R. Ward, Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes, Nat. Chem. 5 (2013) 93–99. [50] A.N. Parvulescu, P.A. Jacobs, D.E. De Vos, Heterogeneous raney nickel and cobalt catalysts for racemization and dynamic kinetic resolution of amines, Adv. Synth. Catal. 350 (2008) 113–121. [51] B. Xia, G. Cheng, X. Lin, Q. Wu, Dynamic double kinetic resolution of amines and alcohols under the cocatalysis of raney nickel/candida antarctica lipase B: from concept to application, Eur. J. Org. Chem. 2014 (2014) 2917–2923. [52] O.E. Sepelgy, A. Brzozowska, M. Rueping, Asymmetric chemoenzymatic reductive acylation of ketones using a combined iron catalyzed Hydrogenation-Racemization and enzymatic resolution cascade, ChemSusChem. 10 (2017) 1664–1668. [53] S. Kara, J.H. Schrittwieser, F. Hollmann, M.B. Ansorge-Schumacher, Recent trends and novel concepts in cofactor-dependent biotransformations, Appl. Microbiol. Biotechnol. 98 (2014) 1517–1529. [54] C.J. Zhu, J.W. Fu, Z.T. Tan, H.J. Ying, Research progress of natural nicotinamide cofactor regeneration system and its artificial analogues, CIESC J. 69 (2018) 267–279. [55] U. Kölle, M. Grätzel, Organometallic rhodium (III) complexes as catalysts for the photoreduction of protons to hydrogen on colloidal TiO2, Angew. Chem., Int. Ed. 26 (1987) 567–570. [56] R. Ruppert, S. Herrmann, E. Steckhan, Very efficient reduction of NAD(P)+ with formate catalysed by cationic rhodium complexes, J. Chem. Soc., Chem. Commun. 17 (1988) 1150–1151. [57] F. Hollmann, B. Witholt, A. Schmid, [Cp*Rh(bpy)(H2O)]2+: a versatile tool for efficient and non-enzymatic regeneration of nicotinamide and flavin coenzymes, J. Mol. Catal. B: Enzym. 2002 (2002) 167–176. [58] J. Canivet, G. Süss-Fink, P. Štĕpnička, Water-soluble phenanthroline complexes of rhodium, iridium and ruthenium for the regeneration of NADH in the enzymatic reduction of ketones, Eur. J. Inorg. Chem. 2007 (2007) 4736–4742. [59] J. Jee, S. Eigler, N. Jux, A. Zahl, R. Eldik, Influence of an extremely negatively charged porphyrin on the reversible binding kinetics of NO to Fe(III) and the subsequent reductive nitrosylation, Inorg. Chem. 46 (2007) 3336–3352. [60] H. Maid, P. Böhm, S.M. Huber, W. Bauer, W. Hummel, D.N. Jux, H. Gröger, Iron catalysis for in situ regeneration of oxidized cofactors by activation and reduction of molecular oxygen: a synthetic metalloporphyrin as a biomimetic NAD(P)H oxidase, Angew. Chem., Int. Ed. 50 (2011) 2397–2400. [61] W. Greschner, C. Lanzerath, R. Tina, K. Tenbrink, S. Borchert, A. Mix, W. Hummel, H. Gröger, Artificial cofactor regeneration with an iron(III) porphyrin as NADH-oxidase mimic in the enzymatic oxidation of Lglutamate to a-ketoglutarate, J. Mol. Catal. B: Enzym. 2014 (2014) 10–15. [62] M. Poizat, I.W. Arends, F. Hollmann, On the nature of mutual inactivation between [Cp*Rh(bpy)(H2O)]2+ and enzymes-analysis and potential remedies, J. Mol. Catal. B: Enzym. 63 (2010) 149–156. [63] Y. Okamoto, V. Köehler, T.R. Ward, An NAD(P)H-dependent artificial transfer hydrogenase for multienzymatic cascades, J. Am. Chem. Soc. 138 (2016) 5781–5784. [64] F. Hollmann, P. Lin, B. Witholt, A. Schmid, Stereospecific biocatalytic epoxidation: the first example of direct regeneration of a FAD-dependent monooxygenase for catalysis, J. Am. Chem. Soc. 125 (2003) 8209–8217. [65] J. Bernard, E. Heerden, I.W. Arends, D.J. Opperman, F. Hollmann, Chemoenzymatic reduction of conjugated C=C double bonds, ChemCatChem 4 (2012) 196–199. [66] F. Hollmann, A. Schmid, Towards [Cp*Rh(bpy)(H2O)]2+-promoted P450 catalysis: direct regeneration of CytC, J. Inorg. Biochem. 103 (2009) 313–315. [67] M.M. Grau, M. Poizat, I.W. Arends, F. Hollmann, Phosphite-driven, [Cp*Rh(bpy)(H2O)]2+-catalyzed reduction of nicotinamide and flavin cofactors: characterization and application to promote chemoenzymatic reduction reactions, Appl. Organometal. Chem. 24 (2010) 380–385. [68] S.T. Ahmed, F. Parmeggiani, N.J. Weise, S.L. Flitsch, N.J. Turner, Chemoenzymatic synthesis of optically pure L-and D-biarylalanines through biocatalytic asymmetric amination and palladium-catalyzed arylation, ACS Catal. 5 (2015) 5410–5413. [69] S.C. Cosgrove, S. Hussain, N.J. Turner, S.P. Marsden, Synergistic chemo/biocatalytic synthesis of alkaloidal tetrahydroquinolines, ACS Catal. 8 (2018) 5570–5573. [70] M. Odachowski, M.F. Greaney, N.J. Turner, Concurrent biocatalytic oxidation and C-C bond formation via gold catalysis: one-pot alkynylation of N-alkyl tetrahydroisoquinolines, ACS Catal. 8 (2018) 10032–10035. [71] A. Cuetos, F.R. Bisogno, I. Lavandera, V. Gotor, Coupling biocatalysis and click chemistry: one-pot two-step convergent synthesis of enantioenriched 1,2,3-triazole-derived diols, Chem. Commun. 49 (2013) 2625–2627. [72] Z.J. Wang, K.N. Clary, R.G. Bergman, K.N. Raymond, F.D. Toste, A supramolecular approach to combining enzymatic and transition metal catalysis, Nat. Chem. 5 (2013) 100–103. [73] H. Sato, W. Hummel, H. Gröger, Cooperative catalysis of noncompatible catalysts through compartmentalization: wacker oxidation and enzymatic reduction in a one-pot process in aqueous media, Angew. Chem., Int. Ed. 54 (2015) 4488–4492. [74] M. Anderson, S. Afewerki, P. Berglund, A. Córdova, Total synthesis of capsaicin analogues from lignin-derived compounds by combined heterogeneous metal, organocatalytic and enzymatic cascades in one pot, Adv. Synth. Catal. 356 (2014) 2113–2118. [75] C. Asta, D. Schmidt, J. Conrad, W. Frey, U. Beifuss, Combination of enzymeand Lewis acid-catalyzed reactions: a new method for the synthesis of 6,7-dihydrobenzofuran-4(5H)-ones starting from 2,5-dimethylfuran and 1,3-cyclohexanediones, Org. Biomol. Chem. 11 (2013) 5692–5701. [76] T.Z. Li, Z.J. Tang, H.L. Wei, Z.J. Tan, P. Liu, J.L. Li, Y.Y. Zheng, J.P. Lin, W.D. Liu, H. F. Jiang, H.F. Liu, L.L. Zhu, Y.H. Ma, Totally atom-economical synthesis of lactic acid from formaldehyde: combined bio-carboligation and chemorearrangement without the isolation of intermediates, Green Chem. 20 (2020) 6809–6814. [77] J.H. Schrittwieser, J. Sattler, V. Resch, F.G. Mutti, W. Kroutil, Recent biocatalytic oxidation-reduction cascades, Curr. Opin. Chem. Biol. 15 (2011) 249–256. [78] N.J. Turner, Enantioselective oxidation of C-O and C-N bonds using oxidases, Chem. Rev. 111 (2011) 4073–4087. [79] N.J. Turner, Deracemisation methods, Curr. Opin. Chem. Biol. 14 (2010) 115–121. [80] J.H. Schrittwieser, B. Groenendaal, V. Resch, D. Ghislieri, S. Wallner, E. Fischereder, E. Fuchs, B. Grischek, J.H. Sattler, P. Macheroux, N.J. Turner, W. Kroutil, Deracemization by simultaneous bio-oxidative kinetic resolution and stereoinversion, Angew. Chem., Int. Ed. 53 (2014) 3731–3734. [81] F. Poulhès, N. Vanthuyne, M.P. Bertrand, S. Gastaldi, G. Gil, Chemoenzymatic dynamic kinetic resolution of primary amines catalyzed by CAL-B at 38–40 ℃, J. Org. Chem. 76 (2011) 7281–7286. [82] L.E. Blidi, N. Vanthuyne, D. Siri, S. Gastaldi, M.P. Bertrand, G. Gil, Switching from (R)-to (S)-selective chemoenzymatic DKR of amines involving sulfanyl radical-mediated racemization, Org. Biomol. Chem. 8 (2010) 4165–4168. [83] L.E. Blidi, M. Nechab, N. Vanthuyne, S. Gastaldi, M.P. Bertrand, G. Gil, En route to (S)-selective chemoenzymatic dynamic kinetic resolution of aliphatic amines. One-pot KR/racemization/KR sequence leading to (S)-amides, J. Org. Chem. 74 (2009) 2901–2903. [84] S. Gastaldi, S. Escoubet, N. Vanthuyne, G. Gil, M.P. Bertrand, Dynamic kinetic resolution of amines involving biocatalysis and in situ free-radical-mediated racemization, Org. Lett. 9 (2007) 837–839. [85] D. Arosio, A. Caligiuri, P. D’Arrigo, G. Pedrocchi-Fantoni, C. Rossi, C. Saraceno, S. Servi, D. Tessaro, Chemo-enzymatic dynamic kinetic resolution of amino acid thioesters, Adv. Synth. Catal. 349 (2007) 1345–1348. [86] P. D’Arrigo, L. Cerioli, A. Fiorati, S. Servi, F. Viani, D. Tessaro, Naphthyl-L-aamino acids via chemo-enzymatic dynamic kinetic resolution, Tetrahedron: Asymmetry 23 (2012) 938–944. [87] P. D’Arrigo, L. Cerioli, S. Servi, F. Viani, D. Tessaro, Synergy between catalysts: enzymes and bases. DKR of non-natural amino acids derivatives, Catal. Sci. Technol. 2 (2012) 1606–1616. [88] S. Aksu, I.W. Arends, F. Hollmann, A new regeneration system for oxidized nicotinamide cofactors, Adv. Synth. Catal. 351 (2009) 1211–1216. [89] G. Hilt, B. Lewall, G. Montero, J.H.P. Utley, E. Steckhan, Efficient in-situ redox catalytic NAD(P)+ regeneration in enzymatic synthesis using transition-metal complexes of 1,10-phenanthroline-5,6-dione and its N-monomethylated derivative as catalysts, Liebigs Ann. 1997 (1997) 2289–2296. [90] J.B. Jones, K.E. Taylor, Use of pyridinium and flavin derivatives for recycling of catalystic amounts of NAD+ during preparative-scale horse liver alchohol dehydrogenase-catalysed oxidations of alcohols, J. Chem. Soc., Chem. Commun. 6 (1973) 205–206. [91] S. Gargiulo, I.W.C.E. Arends, F. Hollmann, A photoenzymatic system for alcohol oxidation, ChemCatChem 3 (2011) 338–342. [92] C. Zhu, Q. Li, L. Pu, Z. Tan, K. Guo, H. Ying, P. Ouyang, Nonenzymatic and metal-free organocatalysis for in situ regeneration of oxidized cofactors by activation and reduction of molecular oxygen, ACS Catal. 6 (2016) 4989–4994. [93] Z. Tan, C. Zhu, J. Fu, X. Zhang, M. Li, H. Ying, Regulating cofactor balance in vivo with a synthetic flavin analogue, Angew. Chem., Int. Ed. 57 (2018) 16464–16468. [94] Y. Sambongi, H. Nitta, K. Ichihashi, M. Futai, I. Ueda, A novel water-soluble Hantzsch 1,4-dihydropyridine compound that functions in biological processes through NADH regeneration, J. Org. Chem. 67 (2002) 3499–3501. [95] C.E. Paul, I.W. Arends, F. Hollmann, Is simpler better? Synthetic nicotinamide cofactor analogues for redox chemistry, ACS Catal. 4 (2014) 788–797. [96] T. Knaus, C.E. Paul, C.W. Levy, S. Vries, F.G. Mutti, F. Hollmann, N.S. Scrutton, Better than nature: nicotinamide biomimetics that outperform natural coenzymes, J. Am. Chem. Soc. 138 (2016) 1033–1039. [97] C.E. Paul, S. Gargiulo, D.J. Opperman, I. Lavandera, V. Gotor-Fernández, V. Gotor, A. Taglieber, I.W. Arends, F. Hollmann, Mimicking nature: synthetic nicotinamide cofactors for C=C bioreduction using enoate reductases, Org. Lett. 15 (2013) 180–183. [98] C.E. Paul, D. Tischler, A. Riedel, T. Heine, N. Itoh, F. Hollmann, Nonenzymatic regeneration of styrene monooxygenase for catalysis, ACS Catal. 5 (2015) 2961–2965. [99] M. Ismail, L. Schroeder, M. Frese, T. Kottke, F. Hollmann, C.E. Paul, N. Sewald, Straightforward regeneration of reduced flavin adenine dinucleotide required for enzymatic tryptophan halogenation, ACS Catal. 9 (2019) 1389–1395. [100] S. Witayakran, L.T. Gelbaum, A.J. Ragauskas, Cascade synthesis of benzofuran derivatives via laccase oxidation-Michael addition, Tetrahedron 63 (2007) 10958–10962. [101] S. Suljić, J. Pietruszka, D. Worgull, Asymmetric bio-and organocatalytic cascade reaction-laccase and secondary amine-catalyzed a-arylation of aldehydes, Adv. Synth. Catal. 357 (2015) 1822–1830. [102] G. Rulli, N. Duangdee, K. Baer, W. Hummel, A. Berkessel, H. Gröger, Direction of kinetically versus thermodynamically controlled organocatalysis and its application in chemoenzymatic synthesis, Angew. Chem., Int. Ed. 50 (2011) 7944–7947. [103] M. Heidlindemann, G. Rulli, A. Berkessel, W. Hummel, H. Gröger, Combination of asymmetric organo-and biocatalytic reactions in organic media using immobilized catalysts in different compartments, ACS Catal. 4 (2014) 1099–1103. [104] J.M.R. Silva, T.B. Bitencourt, M.A. Moreira, M.G. Nascimento, Enzymatic epoxidation of b-caryophyllene using free or immobilized lipases or mycelia from the Amazon region, J. Mol. Catal. B: Enzym. 2013 (2013) 48–54. [105] R.N. Re, J.C. Proessdorf, J.J.L. Clair, M. Subileau, M.D. Burkart, Tailoring chemoenzymatic oxidation via in situ peracids, Org. Biomol. Chem. 17 (2019) 9418–9424. [106] K. Kedziora, A. Díaz-Rodríguez, I. Lavandera, V. Gotor-Fernández, V. Gotor, Laccase/TEMPO-mediated system for the thermodynamically disfavored oxidation of 2,2-dihalo-1-phenylethanol derivatives, Green Chem. 16 (2014) 2448–2453. [107] L. Martínez-Montero, V. Gotor, V. Gotor-Fernández, I. Lavandera, Mild chemoenzymatic oxidation of allylic sec-alcohols. Application to biocatalytic stereoselective redox isomerizations, ACS Catal. 8 (2018) 2413–2419. [108] E. Liardo, N. Ríos-Lombardía, F. Morís, F. Rebolledo, Hybrid organo-and biocatalytic process for the asymmetric transformation of alcohols into amines in aqueous medium, ACS Catal 7 (2017) 4768–4774. [109] S.H. Lee, J.H. Kim, C.B. Park, Coupling photocatalysis and redox biocatalysis toward biocatalyzed artificial photosynthesis, Chem. Eur. J. 19 (2013) 4392–4406. [110] J.S. Lee, S.H. Lee, J.H. Kim, C.B. Park, Artificial photosynthesis on a chip: microfluidic cofactor regeneration and photoenzymatic synthesis under visible light, Lab Chip 11 (2011) 2309–2311. [111] G.L. Wang, J.J. Xu, H.Y. Chen, Dopamine sensitized nanoporous TiO2 film on electrodes: photoelectrochemical sensing of NADH under visible irradiation, Biosens. Bioelectron. 24 (2009) 2494–2498. [112] M. Hambourger, G. Kodis, M.D. Vaughn, G.F. Moore, D. Gust, A.L. Moore, T.A. Moore, Solar energy conversion in a photoelectrochemical biofuel cell, Dalton Trans. 45 (2009) 9979–9989. [113] Q. Shi, D. Yang, Z. Jiang, J. Li, Visible-light photocatalytic regeneration of NADH using P-doped TiO2 nanoparticles, J. Mol. Catal. B: Enzym. 43 (2006) 44–48. [114] A. Brune, G. Jeong, P.A. Liddell, T. Sotomura, T.A. Moore, A.L. Moore, D. Gust, Porphyrin-sensitized nanoparticulate TiO2 as the photoanode of a hybrid photoelectrochemical biofuel cell, Langmuir 20 (2004) 8366–8371. [115] J.H. Kim, S.H. Lee, J.S. Lee, M. Lee, C.B. Park, Zn-containing porphyrin as a biomimetic light-harvesting molecule for biocatalyzed artificial photosynthesis, Chem. Commun. 47 (2011) 10227–10229. [116] J.L. Rickus, P.L. Chang, A.J. Tobin, J.I. Zink, B. Dunn, Photochemical coenzyme regeneration in an enzymatically active optical material, J. Phys. Chem. B. 108 (2004) 9325–9332. [117] Y. Dilgin, L. Gorton, G. Nisli, Photoelectrocatalytic oxidation of NADH with electropolymerized toluidine blue O, Electroanalysis 19 (2007) 286–293. [118] J.A. Kim, S. Kim, J. Lee, J.O. Baeg, J. Kim, Photochemical production of NADH using cobaloxime catalysts and visible-light energy, Inorg. Chem. 51 (2012) 1–7. [119] T.N. Burai, A.J. Panay, H. Zhu, T. Lian, S. Lutz, Light-driven quantum dotmediated regeneration of FMN to drive reduction of ketoisophorone by old yellow enzyme, ACS Catal. 2 (2012) 667–670. [120] Y. Kim, K. Ikebukuro, H. Muguruma, I. Karube, Photogeneration of NADPH by oligothiophenes coupled with ferredoxin-NADP reductase, J. Biotechnol. 59 (1998) 213–220. [121] C.B. Park, S.H. Lee, E. Subramanian, B.B. Kale, S.M. Lee, J.O. Baeg, Solar energy in production of L-glutamate through visible light active photocatalyst-redox enzyme coupled bioreactor, Chem. Commun. 42 (2008) 5423–5425. [122] G.R. Hafenstine, K. Ma, A.W. Harris, O. Yehezkeli, E. Park, D.W. Domaille, J.N. Cha, A.P. Goodwin, Multicatalytic, light-driven upgrading of butanol to 2-ethylhexenal and hydrogen under mild aqueous conditions, ACS Catal. 7 (2017) 568–572. [123] C.S. Morrisona, W.B. Armigere, D.R. Doddse, J.S. Dordickabcd, M.A.G. Koffas, Improved strategies for electrochemical 1,4-NAD(P)H2 regeneration: a new era of bioreactors for industrial biocatalysis, Biotechnol. Adv. 36 (2018) 120–131. [124] A. Damian, K. Maloo, S. Omanovic, Direct electrochemical regeneration of NADH on Au, Cu and Pt-Au electrodes, Chem. Biochem. Eng. Q 21 (2007) 21–32. [125] E. Siu, K. Won, C.B. Park, Electrochemical regeneration of NADH using conductive vanadia-silica xerogels, Biotechnol. Prog. 23 (2007) 293–296. [126] Y.H. Kim, Y.J. Yoo, Regeneration of the nicotinamide cofactor using a mediator-free electrochemical method with a tin oxide electrode, Enzyme Microb. Technol. 44 (2009) 129–134. [127] L. Zhang, N. Vilà, G.W. Kohring, A. Walcarius, M. Etienne, Covalent immobilization of (2,2’-bipyridyl) (pentamethylcyclopentadienyl)-rhodium complex on a porous carbon electrode for efficient electrocatalytic NADH regeneration, ACS Catal. 7 (2017) 4386–4394. [128] A. Damian, S. Omanovic, Electrochemical reduction of NAD+ on a polycrystalline gold electrode, J. Mol. Catal. A: Chem. 253 (2006) 222–233. [129] Z.C. Litman, Y. Wang, H. Zhao, J.F. Hartwig, Cooperative asymmetric reactions combining photocatalysis and enzymatic catalysis, Nature 560 (2018) 355–359. [130] S.K. Kuk, R.K. Singh, D.H. Nam, R. Singh, J.K. Lee, C.B. Park, Photoelectrochemical reduction of carbon dioxide to methanol through a highly efficient enzyme cascade, Angew. Chem. Int. Ed. 56 (2017) 3827–3832. [131] U.T. Bornscheuer, G.W. Huisman, R.J. Kazlauskas, S. Lutz, J.C. Moore, K. Robins, Engineering the third wave of biocatalysis, Nature 485 (2012) 185–194. [132] C.K. Savile, J.M. Janey, E.C. Mundorff, J.C. Moore, S. Tam, W.R. Jarvis, J.C. Colbeck, A. Krebber, F.J. Fleitz, J. Brands, P.N. Devine, G.W. Huisman, G.J. Hughes, Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture, Science 329 (2010) 305–309. [133] A.A. Desai, Sitagliptin manufacture: a compelling tale of green chemistry, process intensification, and industrial asymmetric catalysis, Angew. Chem. Int. Ed. 50 (2011) 1974–1976. [134] D. Ghislieri, A.P. Green, M. Pontini, S.C. Willies, I. Rowles, A. Frank, G. Grogan, N.J. Turner, Engineering an enantioselective amine oxidase for the synthesis of pharmaceutical building blocks and alkaloid natural products, J. Am. Chem. Soc. 135 (2013) 10863–10869. [135] J. Latham, J.M. Henry, H.H. Sharif, B.R.K. Menon, S.A. Shepherd, M.F. Greaney, J. Micklefield, Integrated catalysis opens new arylation pathways via regiodivergent enzymatic C-H activation, Nat. Commun. 7 (2016) 1–8. [136] S.E. Hooshmand, R. Afshari, D.J. Ramón, R.S. Varma, Deep eutectic solvents: cutting-edge applications in cross-coupling reactions, Green Chem. 22 (2020) 3668–3692. [137] J. Paris, A. Telzerow, N. Ríos-Lombardía, K. Steiner, H. Schwab, F. Morís, H. Gröger, J. González-Sabín, Enantioselective one-pot synthesis of biarylsubstituted amines by combining palladium and enzyme catalysis in deep eutectic solvents, ACS Sustain. Chem. Eng. 7 (2019) 5486–5493. [138] L. Cicco, N. Ríos-Lombardía, M.J. Rodríguez-Álvarez, F. Morís, F.M. Perna, V. Capriati, J. García-Álvarez, J. González-Sabín, Programming cascade reactions interfacing biocatalysis with transition-metal catalysis in Deep Eutectic Solvents as biorenewable reaction media, Green Chem. 20 (2018) 3468–3475. [139] F. Dumeignil, M. Guehl, A. Gimbernat, M. Capron, N.L. Ferreira, R. Froidevaux, J.S. Girardon, R. Wojcieszak, P. Dhulster, D. Delcroix, From sequential chemoenzymatic synthesis to integrated hybrid catalysis: taking the best of both worlds to open up the scope of possibilities for a sustainable future, Catal. Sci. Technol. 8 (2018) 5708–5734. [140] C.M. Clouthier, J.N. Pelletier, Expanding the organic toolbox: a guide to integrating biocatalysis in synthesis, Chem. Soc. Rev. 41 (2012) 1585–1605. [141] J. Li, A. Amatuni, H. Renata, Recent advances in the chemoenzymatic synthesis of bioactive natural products, Curr. Opin. Chem. Biol. 55 (2020) 111–118. [142] R.J. Kazlauskas, U.T. Bornscheuer, Finding better protein engineering strategies, Nat. Chem. Biol. 5 (2009) 526–529. [143] M.S. Packer, D.R. Liu, Methods for the directed evolution of proteins, Nat. Rev. Genet. 16 (2015) 379–394. [144] Y. Okamoto, V. Köhler, C.E. Paul, F. Hollmann, T.R. Ward, Efficient in situ regeneration of NADH mimics by an artificial metalloenzyme, ACS Catal. 6 (2016) 3553–3557. [145] H.J. Davis, T.R. Ward, Artificial metalloenzymes: challenges and opportunities, ACS Cent. Sci. 5 (2019) 1120–1136. [146] F. Schwizer, Y. Okamoto, T. Heinisch, Y. Gu, M.M. Pellizzoni, V. Lebrun, R. Reuter, V. Köhler, J.C. Lewis, T.R. Ward, Artificial metalloenzymes: reaction scope and optimization strategies, Chem. Rev. 118 (2018) 142–231. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||