[1] J. Wissig, J. Grischin, J. Bassler, C. Schubert, T. Friedrich, H. Bähre, J.E. Schultz, G. Unden, CyaC, a redox‐regulated adenylate cyclase of Sinorhizobium meliloti with a quinone responsive diheme‐B membrane anchor domain, Mol. Microbiol. 112 (1) (2019) 16-28. [2] J.U. Linder, Structure–function relationships in Escherichia coli adenylate cyclase, Biochem. J. 415 (3) (2008) 449-454. [3] D.T. Gallagher, N.N. Smith, S.-K. Kim, A. Heroux, H. Robinson, P.T. Reddy, Structure of the class IV adenylyl cyclase reveals a novel fold,J. Mol. Biol. 362 (1) (2006) 114-122. [4] J. Linder, E. Hupfeld, M. Weyand, C. Steegborn, S. Moniot, Crystal structure of a class III adenylyl cyclase-like ATP-binding protein from Pseudomonas aeruginosa, J. Struct. Biol. 211 (2) (2020) 107534. [5] O. Ruzvidzo, C. Gehring, A. Wong, New perspectives on plant adenylyl cyclases,Front. Mol. Biosci.6 (2019) 136. [6] J. Bassler, J.E. Schultz, A.N. Lupas, Adenylate cyclases: Receivers, transducers, and generators of signals,Cell. Signal.46 (2018) 135-144. [7] M. Ziegler, J. Bassler, S. Beltz, A. Schultz, A.N. Lupas, J.E. Schultz, Characterization of a novel signal transducer element intrinsic to class IIIa/b adenylate cyclases and guanylate cyclases,FEBS J.284 (8) (2017) 1204-1217. [8] M. Finkbeiner, J. Grischin, A. Seth, J.E. Schultz, In search of a function for the membrane anchors of class IIIa adenylate cyclases,Int. J. Med. Microbiol.309 (3-4) (2019) 245-251. [9] D. Ladant, Bioengineering of Bordetella pertussis Adenylate Cyclase Toxin for Vaccine Development and Other Biotechnological Purposes, Toxins 13 (2) (2021) 83. [10] S.E. Cannella, V.Y.N. Enguéné, M. Davi, C. Malosse, A.C.S. Pérez, J. Chamot-Rooke, P. Vachette, D. Durand, D. Ladant, A. Chenal, Stability, structural and functional properties of a monomeric, calcium–loaded adenylate cyclase toxin, CyaA, from Bordetella pertussis, Sci. Rep. 7 (1) (2017) 1-17. [11] A. Ferragud, C. Velazquez-Sanchez, M.A. Minnig, V. Sabino, P. Cottone, Pituitary adenylate cyclase-activating polypeptide (PACAP) modulates dependence-induced alcohol drinking and anxiety-like behavior in male rats, Neuropsychopharmacol. 46 (3) (2021) 509-518. [12] N. Wolf, M. Bussmann, A. Koch-Koerfges, N. Katcharava, J. Schulte, T. Polen, J. Hartl, J.A. Vorholt, M. Baumgart, M. Bott, Molecular basis of growth inhibition by acetate of an adenylate cyclase-deficient mutant of Corynebacterium glutamicum, Front. Microbiol. 11 (2020) 87. [13] S.A. Kelly, S. Mix, T.S. Moody, B.F. Gilmore, Transaminases for industrial biocatalysis: novel enzyme discovery, Appl. Microbiol. Biot. 104 (11) (2020) 4781-4794. [14] A. Madhavan, K.B. Arun, P. Binod, R. Sirohi, A. Tarafdar, R. Reshmy, M.K. Awasthi, R. Sindhu, Design of novel enzyme biocatalysts for industrial bioprocess: Harnessing the power of protein engineering, high throughput screening and synthetic biology, Bioresour. Technol. (2020) 124617. [15] M. Jin, Y. Gai, X. Guo, Y. Hou, R. Zeng, Properties and applications of extremozymes from deep-sea extremophilic microorganisms: A mini review, Mar. Drugs 17 (12) (2019) 656. [16] Y. He, N. Li, Y. Chen, X. Chen, J. Bai, J. Wu, J. Xie, H. Ying, Cloning, expression, and characterization of an adenylate cyclase from Arthrobacter sp. CGMCC 3584, Appl. Microbiol. Biot. 96 (4) (2012) 963-970. [17] J.U. Linder, A. Schultz, J.E. Schultz, Adenylyl cyclase Rv1264 from Mycobacterium tuberculosis has an autoinhibitory N-terminal domain, J. Biol. Chem. 277 (18) (2002) 15271-15276. [18] V.A. Simossis, J. Heringa, PRALINE: a multiple sequence alignment toolbox that integrates homology-extended and secondary structure information, Nucleic Acids Res. 33 (suppl_2) (2005) W289-W294. [19] K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol. 28 (2011) 2731-2739. [20] N.G. Bharambe, D.V. Barathy, W. Syed, S.S. Visweswariah, M. Colaco, S. Misquith, K. Suguna, Substrate specificity determinants of class III nucleotidyl cyclases, FEBS J. 283 (20) (2016) 3723-3738. [21] Y. Okawara, H. Hirano, A. Kimura, N. Sato, Y. Hayashi, M. Osada, T. Kawakami, N. Ootake, E. Kinoshita, K. Fujita, Phos-tag diagonal electrophoresis precisely detects the mobility change of phosphoproteins in Phos-tag SDS-PAGE, J. Proteomics 231 (2021) 104005. [22] H. Niu, X. Sun, J. Song, C. Zhu, Y. Chen, N. Gao, X. Qu, H. Ying, D. Liu, Knockout of pde gene in Arthrobacter sp. CGMCC 3584 and transcriptomic analysis of its effects on cAMP production, Bioproc. Biosyst. Eng. 43 (2020) 839-850. [23] M. Sharifi, S.-M. Robatjazi, M. Sadri, J.M. Mosaabadi, Immobilization of organophosphorus hydrolase enzyme by covalent attachment on modified cellulose microfibers using different chemical activation strategies: Characterization and stability studies, Chin. J. Chem. Eng. 27 (1) (2019) 191-199. [24] S. Bansal, D. Gnaneswari, P. Mishra, B. Kundu, Structural stability and functional analysis of L-asparaginase from Pyrococcus furiosus,Biochemistry (Moscow)75 (3) (2010) 375-381. [25] Y. Jiang, Z. Li, C. Wang, Y.J. Zhou, H. Xu, S. Li, Biochemical characterization of three new α-olefin-producing P450 fatty acid decarboxylases with a halophilic property, Bitechnol. Biofuels12 (1) (2019) 1-14. [26] D.F.C. Lopes, C.R.D. de Assis, M.C.S. de Sant’Anna, J.F. da Silva, R. de Souza Bezerra, F.L. Frédou, Brain acetylcholinesterase of three perciformes: from the characterization to the in vitro effect of metal ions and pesticides, Ecotoxicol. Environ. Saf. 173 (2019) 494-503. [27] D.T. Gallagher, S.K. Kim, H. Robinson, P.T. Reddy, Active-site structure of class IV adenylyl cyclase and transphyletic mechanism, J. Mol. Biol. 405 (3) (2011) 787-803. [28] Q. Dong, X. Yan, M. Zheng, Z. Yang, Comparison of two type IV hyperthermophilic adenylyl cyclases characterizations from the archaeon Pyrococcus furiosus, J. Mol. Catal. B: Enzym. 88 (2013) 7-13. [29] J.U. Linder, Class III adenylyl cyclases: molecular mechanisms of catalysis and regulation, Cell. Mol. Life Sci. 63 (15) (2006) 1736-1751. |