中国化学工程学报 ›› 2025, Vol. 86 ›› Issue (10): 138-149.DOI: 10.1016/j.cjche.2025.08.001
• Special Issue on Celebrating the 100th Anniversary of the School of Chemical Engineering and Technology of Tianjin University • 上一篇 下一篇
Yue Xu1, Chenwen Liu2, Lei Qin2,3,4,5,6, Bo Lv7, Genlin Zhang1, Chun Li2,3,4,5,6,7
收稿日期:2025-03-30
修回日期:2025-05-17
接受日期:2025-08-01
出版日期:2025-10-28
发布日期:2025-08-07
通讯作者:
Genlin Zhang,E-mail:zhgl_food@sina.com;Chun Li,E-mail:lichun@tsinghua.edu.cn
基金资助:Yue Xu1, Chenwen Liu2, Lei Qin2,3,4,5,6, Bo Lv7, Genlin Zhang1, Chun Li2,3,4,5,6,7
Received:2025-03-30
Revised:2025-05-17
Accepted:2025-08-01
Online:2025-10-28
Published:2025-08-07
Contact:
Genlin Zhang,E-mail:zhgl_food@sina.com;Chun Li,E-mail:lichun@tsinghua.edu.cn
Supported by:摘要: Terpenoids, one of the most diverse and structurally varied natural products in nature, are widely distributed in plants, microbes, and other organisms. Their structural diversity confers significant importance in medicine, food, flavorings, and energy. However, traditional methods of plant extraction and chemical synthesis have limitations in industrial applications. Consequently, microbial cell factories have emerged as an important platform for terpenoid production. Terpene synthases (TPSs) are crucial in determining the structural and functional diversity of terpenoids. This review discussed the origin and classification of TPSs, outlines commonly used TPS mining methods, and summarizes advances in TPS engineering. In addition, it also explores the influence of machine learning on enzyme mining, the existing challenges and the future opportunities alongside cutting-edge technologies.
Yue Xu, Chenwen Liu, Lei Qin, Bo Lv, Genlin Zhang, Chun Li. Mining and engineering of terpene synthases and their applications in biomanufacturing[J]. 中国化学工程学报, 2025, 86(10): 138-149.
Yue Xu, Chenwen Liu, Lei Qin, Bo Lv, Genlin Zhang, Chun Li. Mining and engineering of terpene synthases and their applications in biomanufacturing[J]. Chinese Journal of Chemical Engineering, 2025, 86(10): 138-149.
| [1] T. Zeng, Z.H. Liu, J.Y. Zhuang, Y.T. Jiang, W.G. He, H.J. Diao, N. Lv, Y.X. Jian, D.H. Liang, Y.F. Qiu, R. Zhang, F. Zhang, X.W. Tang, R.B. Wu, TeroKit: a database-driven web server for terpenome research, J. Chem. Inf. Model. 60 (4) (2020) 2082-2090. [2] J. Gershenzon, N. Dudareva, The function of terpene natural products in the natural world, Nat. Chem. Biol. 3 (7) (2007) 408-414. [3] S.S. Chandran, J.T. Kealey, C.D. Reeves, Microbial production of isoprenoids, Process. Biochem. 46 (9) (2011) 1703-1710. [4] A. Kazemi, A. Iraji, N. Esmaealzadeh, M. Salehi, M.H. Hashempur, Peppermint and menthol: a review on their biochemistry, pharmacological activities, clinical applications, and safety considerations, Crit. Rev. Food Sci. Nutr. 65 (8) (2025) 1553-1578. [5] D.L. Klayman, Qinghaosu (artemisinin): an antimalarial drug from China, Science 228 (4703) (1985) 1049-1055. [6] H.J. Long, Paclitaxel (taxol): a novel anticancer chemotherapeutic drug, Mayo Clin. Proc. 69 (4) (1994) 341-345. [7] P. Su, H.Y. Guan, Y.J. Zhao, Y.R. Tong, M.M. Xu, Y.F. Zhang, T.Y. Hu, J. Yang, Q.Q. Cheng, L.H. Gao, Y.J. Liu, J.W. Zhou, R.J. Peters, L.Q. Huang, W. Gao, Identification and functional characterization of diterpene synthases for triptolide biosynthesis from Tripterygium wilfordii, Plant J. 93 (1) (2018) 50-65. [8] N.A. Ford, J.W. Erdman Jr, Are lycopene metabolites metabolically active? Acta Biochim. Pol. 59 (1) (2012) 1-4. [9] J. Rolf, M.K. Julsing, K. Rosenthal, S. Lutz, A gram-scale limonene production process with engineered Escherichia coli, Molecules 25 (8) (2020) 1881. [10] J. Zhang, X. Wang, X.Y. Zhang, Y. Zhang, F. Wang, X. Li, Sesquiterpene synthase engineering and targeted engineering of α-santalene overproduction in Escherichia coli, J. Agric. Food Chem. 70 (17) (2022) 5377-5385. [11] K.W. George, J. Alonso-Gutierrez, J.D. Keasling, T.S. Lee, Isoprenoid drugs, biofuels, and chemicals: artemisinin, farnesene, and beyond, Adv. Biochem. Eng. Biotechnol. 148 (2015) 355-389. [12] E.J. Corey, T.P. Loh, S. AchyuthaRao, D.C. Daley, S. Sarshar, Stereocontrolled total synthesis of (+)- and (-)-epibatidine, J. Org. Chem. 58 (21) (1993) 5600-5602. [13] M. Ihara, M. Suzuki, K. Fukumoto, T. Kametani, C. Kabuto, Stereoselective total synthesis of (.+-.)-atisine via intramolecular double Michael reaction, J. Am. Chem. Soc. 110 (6) (1988) 1963-1964. [14] J.D. Keasling, Synthetic biology and the development of tools for metabolic engineering, Metab. Eng. 14 (3) (2012) 189-195. [15] T. An, G.Y. Lin, Y. Liu, L. Qin, Y.Q. Xu, X.D. Feng, C. Li, De novo biosynthesis of anticarcinogenic icariin in engineered yeast, Metab. Eng. 80 (2023) 207-215. [16] G. Daletos, C. Katsimpouras, G. Stephanopoulos, Novel strategies and platforms for industrial isoprenoid engineering, Trends Biotechnol. 38 (7) (2020) 811-822. [17] L.P. Zeng, K. Dehesh, The eukaryotic MEP-pathway genes are evolutionarily conserved and originated from Chlaymidia and cyanobacteria, BMC Genomics 22 (1) (2021) 137. [18] W.W. Ge, H.H. Pai, J.L. Zhang, C.B. Zhang, W.Y. Lu, Construction of isopentenol utilization pathway and artificial multifunctional enzyme for miltiradiene synthesis in Saccharomyces cerevisiae, Bioresour. Technol. 419 (2025) 132065. [19] J.M. Clomburg, S. Qian, Z.G. Tan, S. Cheong, R. Gonzalez, The isoprenoid alcohol pathway, a synthetic route for isoprenoid biosynthesis, Proc. Natl. Acad. Sci. USA 116 (26) (2019) 12810-12815. [20] H. Jiang, X. Wang, Biosynthesis of monoterpenoid and sesquiterpenoid as natural flavors and fragrances, Biotechnol. Adv. 65 (2023) 108151. [21] F. Chen, D. Tholl, J. Bohlmann, E. Pichersky, The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the Kingdom, Plant J. 66 (1) (2011) 212-229. [22] D. Tholl, Terpene synthases and the regulation, diversity and biological roles of terpene metabolism, Curr. Opin. Plant Biol. 9 (3) (2006) 297-304. [23] M. Koksal, Y.H. Jin, R.M. Coates, R. Croteau, D.W. Christianson, Taxadiene synthase structure and evolution of modular architecture in terpene biosynthesis, Nature 469 (7328) (2011) 116-120. [24] D.W. Christianson, Structural and chemical biology of terpenoid cyclases, Chem. Rev. 117 (17) (2017) 11570-11648. [25] B.Y. Xing, J.H. Yu, C.B. Chi, X.Y. Ma, Q.X. Xu, A.N. Li, Y.J. Ge, Z.D. Wang, T. Liu, H.L. Jia, F.L. Yin, J. Guo, L.Q. Huang, D.H. Yang, M. Ma, Functional characterization and structural bases of two class I diterpene synthases in pimarane-type diterpene biosynthesis, Commun. Chem. 4 (1) (2021) 140. [26] M. Koksal, H.Y. Hu, R.M. Coates, R.J. Peters, D.W. Christianson, Structure and mechanism of the diterpene cyclase ent-copalyl diphosphate synthase, Nat. Chem. Biol. 7 (7) (2011) 431-433. [27] J. Degenhardt, T.G. Kollner, J. Gershenzon, Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants, Phytochemistry 70 (15-16) (2009) 1621-1637. [28] D.C. Williams, D.J. McGarvey, E.J. Katahira, R. Croteau, Truncation of limonene synthase preprotein provides a fully active ‘pseudomature’ form of this monoterpene cyclase and reveals the function of the amino-terminal arginine pair, Biochemistry 37 (35) (1998) 12213-12220. [29] Y.R. Tong, W. Gao, L.Q. Huang, Insights into structure and function of diterpene synthases in plants, Acta Pharm. Sin. 53 (8) (2018) 1195-1201, 1194. [30] N. Dudareva, D. Martin, C.M. Kish, N. Kolosova, N. Gorenstein, J. Faldt, B. Miller, J. Bohlmann, (E)-beta-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily, Plant Cell 15 (5) (2003) 1227-1241. [31] D.M. Martin, S. Aubourg, M.B. Schouwey, L. Daviet, M. Schalk, O. Toub, S.T. Lund, J. Bohlmann, Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays, BMC Plant Biol. 10 (2010) 226. [32] Q. Wang, J. Jiang, Y.W. Liang, S.S. Li, Y.P. Xia, L.S. Zhang, X.Y. Wang, Expansion and functional divergence of terpene synthase genes in angiosperms: a driving force of terpene diversity, Hortic. Res. 12 (1) (2024) uhae272. [33] N. Dudareva, L. Cseke, V.M. Blanc, E. Pichersky, Evolution of floral scent in clarkia: novel patterns of S-linalool synthase gene expression in the C. breweri flower, Plant Cell 8 (7) (1996) 1137-1148. [34] M.Z. Ren, K.L. Dong, J. Zhang, Z.R. Chen, J.X. Su, Genome-wide analysis of TPS gene family of Zanthoxylum armatum, Journal of Sichuan University (Natural Science Edition), 59 (4) (2022) 046001. [35] W. Wang, M.Y. Wang, Y.L. Zeng, X.Y. Chen, X.Y. Wang, A.M. Barrington, J.M. Tao, R.G. Atkinson, N.J. Nieuwenhuizen, The terpene synthase (TPS) gene family in kiwifruit shows high functional redundancy and a subset of TPS likely fulfil overlapping functions in fruit flavour, floral bouquet and defence, Mol. Hortic. 3 (1) (2023) 9. [36] P.L. Srivastava, P.P. Daramwar, R. Krithika, A. Pandreka, S.S. Shankar, H.V. Thulasiram, Functional characterization of novel sesquiterpene synthases from Indian sandalwood, santalum album, Sci. Rep. 5 (2015) 10095. [37] C. Landmann, B. Fink, M. Festner, M. Dregus, K.H. Engel, W. Schwab, Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia), Arch. Biochem. Biophys. 465 (2) (2007) 417-429. [38] H.T.D. Tran, H.T.T. Nguyen, T.B. Huynh, H.N. Nguyen, L.T. Nguyen, N.U. Tran, B.T.M. Pham, D.H. Nguyen, T. Tran, T.T.H. Nguyen, Functional characterization of a bark-specific monoterpene synthase potentially involved in wounding- and methyl jasmonate-induced linalool emission in rubber (Hevea brasiliensis), J. Plant Physiol. 282 (2023) 153942. [39] G.Q. Li, Y. Chen, X. Wen, X. Geng, S. Zhang, Y.M. Ma, C.M. Yang, L.P. Zhang, Y. Li, Z. Zhang, Cloning and functional analysis of novel terpene synthase genes from Aquilaria sinensis and insights into the biosynthesis of sesquiterpene, Ind. Crops Prod. 217 (2024) 118835. [40] Y. Zhi, C. Dai, X.T. Fang, X.C. Xiao, H. Lu, F.F. Chen, R. Chen, W.H. Ma, Z.X. Deng, L. Lu, T.G. Liu, Gene-directed in vitro mining uncovers the insect-repellent constituent from mugwort (Artemisia argyi), J. Am. Chem. Soc. 146 (45) (2024) 30883-30892. [41] R, Stevens. Dictionary of terpenoids, J. D. Connolly and R. A. Hill, Chapman & Hall, London, 1991. [42] N.N. Gerber, A volatile metabolite of actinomycetes, 2-methylisoborneol, J. Antibiot. 22 (10) (1969) 508-509. [43] N.N. Gerber, Sesquiterpenoids from actinomycetes, Phytochemistry 11 (1) (1972) 385-388. [44] H. Seto, H. Yonehara, Studies on the biosynthesis of pentalenolactone. III. Isolation of a biosynthetic intermediate hydrocarbon, pentalenene, J. Antibiot. 33 (1) (1980) 92-93. [45] N.G.H. Leferink, N.S. Scrutton, Predictive engineering of class I terpene synthases using experimental and computational approaches, Chembiochem 23 (5) (2022) e202100484. [46] M. Komatsu, M. Tsuda, S. Omura, H. Oikawa, H. Ikeda, Identification and functional analysis of genes controlling biosynthesis of 2-methylisoborneol, Proc. Natl. Acad. Sci. USA 105 (21) (2008) 7422-7427. [47] D.E. Cane, H. Ikeda, Exploration and mining of the bacterial terpenome, Acc. Chem. Res. 45 (3) (2012) 463-472. [48] R. Chen, T. Feng, M. Li, X.Y. Zhang, J. He, B. Hu, Z.X. Deng, T.G. Liu, J.K. Liu, X.H. Wang, G.K. Bian, Characterization of tremulane sesquiterpene synthase from the basidiomycete Irpex lacteus, Org. Lett. 24 (31) (2022) 5669-5673. [49] J.J. Guo, Y.S. Cai, F.C. Cheng, C.J. Yang, W.Q. Zhang, W.L. Yu, J.J. Yan, Z.X. Deng, K. Hong, Genome mining reveals a multiproduct sesterterpenoid biosynthetic gene cluster in Aspergillus ustus, Org. Lett. 23 (5) (2021) 1525-1529. [50] Z.Y. Wang, Q. Yang, J.Y. He, H.X. Li, X.M. Pan, Z.N. Li, H.M. Xu, J.D. Rudolf, D.J. Tantillo, L.B. Dong, Cytochrome P450 mediated cyclization in eunicellane derived diterpenoid biosynthesis, Angew. Chem. Int. Ed 62 (45) (2023) e202312490. [51] W. Wu, W. Tran, C.A. Taatjes, J. Alonso-Gutierrez, T.S. Lee, J.M. Gladden, Rapid discovery and functional characterization of terpene synthases from four endophytic Xylariaceae, PLoS One 11 (2) (2016) e0146983. [52] X. Sun, Y.S. Cai, Y.J. Yuan, G.K. Bian, Z.L. Ye, Z.X. Deng, T.G. Liu, Genome mining in Trichoderma viride J1-030: discovery and identification of novel sesquiterpene synthase and its products, Beilstein J. Org. Chem. 15 (2019) 2052-2058. [53] P. Zhang, G.W. Wu, S.C. Heard, C.S. Niu, S.A. Bell, F.L. Li, Y. Ye, Y.H. Zhang, J.M. Winter, Identification and characterization of a cryptic bifunctional type I diterpene synthase involved in talaronoid biosynthesis from a marine-derived fungus, Org. Lett. 24 (38) (2022) 7037-7041. [54] Z. Li, Y.Y. Jiang, X.W. Zhang, Y.M. Chang, S. Li, X.M. Zhang, S.M. Zheng, C. Geng, P. Men, L. Ma, Y. Yang, Z.Q. Gao, Y.J. Tang, S.Y. Li, Fragrant venezuelaenes A and B with A 5-5-6-7 tetracyclic skeleton: discovery, biosynthesis, and mechanisms of central catalysts, ACS Catal. 10 (10) (2020) 5846-5851. [55] J. Rinkel, J.S. Dickschat, Mechanistic studies on trichoacorenol synthase from amycolatopsis benzoatilytica, Chembiochem 21 (6) (2020) 807-810. [56] H.C. Xu, J. Rinkel, J.S. Dickschat, Isoishwarane synthase from Streptomyces lincolnensis, Org. Chem. Front. 8 (6) (2021) 1177-1184. [57] C. Chen, G. Yao, F.L. Wang, S.H. Bao, X.K. Wan, P.G. Han, K. Wang, T.Y. Song, H. Jiang, Identification of a (+)-cubenene synthase from filamentous fungi Acremonium chrysogenum, Biochem. Biophys. Res. Commun. 677 (2023) 119-125. [58] M. Ringel, N. Dimos, S. Himpich, M. Haack, C. Huber, W. Eisenreich, G. Schenk, B. Loll, T. Bruck, Biotechnological potential and initial characterization of two novel sesquiterpene synthases from Basidiomycota Coniophora puteana for heterologous production of δ-cadinol, Microb. Cell Fact. 21 (1) (2022) 64. [59] P.S. Karunanithi, D.I. Berrios, S. Wang, J. Davis, T. Shen, O. Fiehn, J.N. Maloof, P. Zerbe, The foxtail millet (Setaria italica) terpene synthase gene family, Plant J. 103 (2) (2020) 781-800. [60] S.M. Yang, H.Y. Chu, Y.X. Wang, B.L. Guo, T.Y. An, Q. Shen, Analysis of monoterpene biosynthesis and functional TPSs of Perilla frutescens based on transcriptome and metabolome, Med. Plant Biol. 3 (1) (2024). [61] Y. Sun, W.Q. Xiao, Q.N. Wang, J. Wang, X.D. Kong, W.H. Ma, S.X. Liu, P. Ren, L.N. Xu, Y.J. Zhang, Multiple variation patterns of terpene synthases in 26 maize genomes, BMC Genomics 24 (1) (2023) 46. [62] R.M. McLellan, D. Berry, R.C. Cameron, E.J. Parker, Non-canonical type II terpene cyclases deliver rare terpenoid architectures, J. Am. Chem. Soc. 147 (16) (2025) 13108-13113. [63] Z. Li, L.L. Zhang, K.W. Xu, Y.Y. Jiang, J.K. Du, X.W. Zhang, L.H. Meng, Q.L. Wu, L. Du, X.J. Li, Y.C. Hu, Z.Z. Xie, X.K. Jiang, Y.J. Tang, R.B. Wu, R.T. Guo, S.Y. Li, Molecular insights into the catalytic promiscuity of a bacterial diterpene synthase, Nat. Commun. 14 (1) (2023) 4001. [64] T. Abe, H. Shiratori, K. Kashiwazaki, K. Hiasa, D. Ueda, T. Taniguchi, H. Sato, T. Abe, T. Sato, Structural-model-based genome mining can efficiently discover novel non-canonical terpene synthases hidden in genomes of diverse species, Chem. Sci. 15 (27) (2024) 10402-10407. [65] Z.K. Liu, Y.H. Fu, H. Wang, Y.P. Zhang, J.J. Han, Y.Y. Wang, S.Q. Shen, C.J. Li, M.M. Jiang, X.M. Yang, X.M. Song, The high-quality sequencing of the Brassica rapa ‘XiangQingCai’ genome and exploration of genome evolution and genes related to volatile aroma, Hortic. Res. 10 (10) (2023) uhad187. [66] H.T. Yang, C. Wang, G.R. Zhou, Y.X. Zhang, T.X. He, L.L. Yang, Y. Wu, Z.N. Wang, X. Tang, G. Chen, Z.Y. Liu, H.Y. Tang, H.L. Zhou, X.M. Kang, S.Y. Zhang, L. Leng, S.L. Chen, C. Song, A haplotype-resolved gap-free genome assembly provides novel insight into monoterpenoid diversification in Mentha suaveolens ‘ Variegata’, Hortic. Res. 11 (3) (2024) uhae022. [67] Z.N. Li, B.F. Xu, V. Kojasoy, T. Ortega, D.A. Adpressa, W.B. Ning, X.T. Wei, J. Liu, D.J. Tantillo, S. Loesgen, J.D. Rudolf, First trans-eunicellane terpene synthase in bacteria, Chem 9 (3) (2023) 698-708. [68] Y.L. Hu, Q. Zhang, S.H. Liu, J.L. Sun, F.Z. Yin, Z.R. Wang, J. Shi, R.H. Jiao, H.M. Ge, Building Streptomyces albus as a chassis for synthesis of bacterial terpenoids, Chem. Sci. 14 (13) (2023) 3661-3667. [69] Q. Jia, R. Brown, T.G. Kollner, J. Fu, X. Chen, G.K. Wong, J. Gershenzon, R.J. Peters, F. Chen, Origin and early evolution of the plant terpene synthase family, Proc. Natl. Acad. Sci. USA 119 (15) (2022) e2100361119. [70] J.Z. Shang, D.D. Feng, H. Liu, L.T. Niu, R.H. Li, Y.J. Li, M.X. Chen, A. Li, Z.H. Liu, Y.H. He, X. Gao, H.Y. Jian, C.Q. Wang, K.X. Tang, M.Z. Bao, J.H. Wang, S.H. Yang, H.J. Yan, G.G. Ning, Evolution of the biosynthetic pathways of terpene scent compounds in roses, Curr. Biol. 34 (15) (2024) 3550-3563.e8. [71] M.T. Parker, Y. Zhong, X.B. Dai, S.L. Wang, P. Zhao, Comparative genomic and transcriptomic analysis of terpene synthases in Arabidopsis and Medicago, IET Syst. Biol. 8 (4) (2014) 146-153. [72] X.L. Chen, J.M. Urban, J. Wurlitzer, X.T. Wei, J. Han, S.E. O’Connor, J.D. Rudolf, T.G. Kollner, F. Chen, Canonical terpene synthases in arthropods: intraphylum gene transfer, Proc. Natl. Acad. Sci. USA 121 (51) (2024) e2413007121. [73] S.M. Chaw, Y.C. Liu, Y.W. Wu, H.Y. Wang, C.I. Lin, C.S. Wu, H.M. Ke, L.Y. Chang, C.Y. Hsu, H.T. Yang, E. Sudianto, M.H. Hsu, K.P. Wu, L.N. Wang, J.H. Leebens-Mack, I.J. Tsai, Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution, Nat. Plants 5 (1) (2019) 63-73. [74] X.D. Wang, C.Y. Xu, Y.J. Zheng, Y.F. Wu, Y.T. Zhang, T. Zhang, Z.Y. Xiong, H.K. Yang, J. Li, C. Fu, F.Y. Qiu, X.Y. Dai, X.L. Liu, X.S. He, S.S. Zhou, S.X. Li, T. Fu, H. Xie, Y.L. Chen, Q.Q. Zhang, H.Q. Wang, Y.D. Wang, C. Zhou, X.M. Jiang, Chromosome-level genome assembly and resequencing of camphor tree (Cinnamomum camphora) provides insight into phylogeny and diversification of terpenoid and triglyceride biosynthesis of Cinnamomum, Hortic. Res. 9 (2022) uhac216. [75] X. Han, J. Zhang, S. Han, S.L. Chong, G. Meng, M. Song, Y. Wang, S. Zhou, C. Liu, L. Lou, X. Lou, L. Cheng, E. Lin, H. Huang, Q. Yang, Z. Tong, The chromosome-scale genome of Phoebe bournei reveals contrasting fates of terpene synthase (TPS)-a and TPS-b subfamilies, Plant Commun. 3 (6) (2022) 100410. [76] M. Rendon-Anaya, E. Ibarra-Laclette, A. Mendez-Bravo, T.Y. Lan, C.F. Zheng, L. Carretero-Paulet, C.A. Perez-Torres, A. Chacon-Lopez, G. Hernandez-Guzman, T.H. Chang, K.M. Farr, W. Brad Barbazuk, S. Chamala, M. Mutwil, D. Shivhare, D. Alvarez-Ponce, N. Mitter, A. Hayward, S. Fletcher, J. Rozas, A.S. Gracia, D. Kuhn, A.F. Barrientos-Priego, J. Salojarvi, P. Librado, D. Sankoff, A. Herrera-Estrella, V.A. Albert, L. Herrera-Estrella, The avocado genome informs deep angiosperm phylogeny, highlights introgressive hybridization, and reveals pathogen-influenced gene space adaptation, Proc. Natl. Acad. Sci. USA 116 (34) (2019) 17081-17089. [77] B. Xiong, L.M. Zhang, L. Xie, L.Z. Li, X.X. He, Y. Niu, T.Y. Zhang, S. Liao, S.B. Dong, Z.X. Zhang, Genome of Lindera glauca provides insights into the evolution of biosynthesis genes for aromatic compounds, iScience 25 (8) (2022) 104761. [78] Y.C. Chen, Z. Li, Y.X. Zhao, M. Gao, J.Y. Wang, K.W. Liu, X. Wang, L.W. Wu, Y.L. Jiao, Z.L. Xu, W.G. He, Q.Y. Zhang, C.K. Liang, Y.Y. Hsiao, D.Y. Zhang, S.R. Lan, L.Q. Huang, W. Xu, W.C. Tsai, Z.J. Liu, Y. Van de Peer, Y.D. Wang, The Litsea genome and the evolution of the laurel family, Nat. Commun. 11 (2020) 1675. [79] M. Rai, A. Rai, T. Mori, R. Nakabayashi, M. Nakamura, M. Kojoma, H. Suzuki, K. Saito, M. Yamazaki, Multi-omics analysis reveals tissue-specific biosynthesis and accumulation of diterpene alkaloids in Aconitum japonicum, J. Nat. Med. 79 (3) (2025) 499-516. [80] S.S. Chen, M.F. Zhang, S. Ding, Z.C. Xu, S.F. Wang, X.X. Meng, S.L. Chen, R.R. Gao, W. Sun, Comprehensive characterization of volatile terpenoids and terpene synthases in Lanxangia tsaoko, Mol. Hortic. 5 (1) (2025) 20. [81] Z.J. Kang, X.L. Yuan, C.G. Zhang, Y. Wang, L. Li, Y. Zheng, Genomic and multi-omics analysis of Phlebopus portentosus: effects of cultivation on secondary metabolites, J. Fungi 11 (4) (2025) 323. [82] L. Guo, Y.G. Liu, Y.W. Fu, Y.Y. Wang, H.J. Wang, S.M. Zhu, Q.Z. He, D.X. Zhang, S.S. Zhu, S.X. Wang, T. Tong, X.J. Dong, X.L. Wang, Y.N. Liu, G.Q. Liu, Multiomics reveals the molecular mechanism of unsaturated fatty acid-induced terpenoid biosynthesis in Sanghuangporus lonicericola, NPJ Sci. Food 9 (1) (2025) 44. [83] R. Chen, Q.D. Jia, X. Mu, B. Hu, X. Sun, Z.X. Deng, F. Chen, G.K. Bian, T.G. Liu, Systematic mining of fungal chimeric terpene synthases using an efficient precursor-providing yeast chassis, Proc. Natl. Acad. Sci. USA 118 (29) (2021) e2023247118. [84] Y.T. Duan, A. Koutsaviti, M. Harizani, C. Ignea, V. Roussis, Y. Zhao, E. Ioannou, S.C. Kampranis, Widespread biosynthesis of 16-carbon terpenoids in bacteria, Nat. Chem. Biol. 19 (12) (2023) 1532-1539. [85] X.H. Zheng, B.L. Wu, Y.J. Liu, S.K. Simmons, K. Kim, G.S. Clarke, A. Ashiq, J. Park, J.W. Li, Z.L. Wang, L.Q. Tong, Q.Z. Wang, K.T. Rajamani, R. Munoz-Castaneda, S. Mu, T.B. Qi, Y.X. Zhang, Z.C. Ngiam, N. Ohte, C. Hanashima, Z.H. Wu, X.M. Xu, J.Z. Levin, X. Jin, Massively parallel in vivo Perturb-seq reveals cell-type-specific transcriptional networks in cortical development, Cell 187 (13) (2024) 3236-3248.e21. [86] H. Lu, F.L. Zhang, L. Huang, Establishment of iBioFoundry for synthetic biology applications, Synth. Biol. 4 (5) (2023) 877-891. [87] N.G.H. Leferink, M.S. Dunstan, K.A. Hollywood, N. Swainston, A. Currin, A.J. Jervis, E. Takano, N.S. Scrutton, An automated pipeline for the screening of diverse monoterpene synthase libraries, Sci. Rep. 9 (2019) 11936. [88] Y.J. Yuan, S. Cheng, G.K. Bian, P. Yan, Z.N. Ma, W. Dai, R. Chen, S. Fu, H.W. Huang, H.M. Chi, Y.S. Cai, Z.X. Deng, T.G. Liu, Efficient exploration of terpenoid biosynthetic gene clusters in filamentous fungi, Nat. Catal. 5 (2022) 277-287. [89] W. Yuan, C.J. Jiang, Q. Wang, Y.B. Fang, J. Wang, M. Wang, H. Xiao, Biosynthesis of mushroom-derived type II ganoderic acids by engineered yeast, Nat. Commun. 13 (1) (2022) 7740. [90] P. Hugenholtz, G.W. Tyson, Metagenomics, Nature 455 (7212) (2008) 481-483. [91] Y. Yamada, T. Kuzuyama, M. Komatsu, K. Shin-Ya, S. Omura, D.E. Cane, H. Ikeda, Terpene synthases are widely distributed in bacteria, Proc. Natl. Acad. Sci. USA 112 (3) (2015) 857-862. [92] C.Y. Lyu, T. Chen, B. Qiang, N.F. Liu, H.Y. Wang, L.R. Zhang, Z.M. Liu, CMNPD: a comprehensive marine natural products database towards facilitating drug discovery from the ocean, Nucleic Acids Res. 49 (D1) (2021) D509-D515. [93] P.D. Scesa, Z.J. Lin, E.W. Schmidt, Ancient defensive terpene biosynthetic gene clusters in the soft corals, Nat. Chem. Biol. 18 (6) (2022) 659-663. [94] I. Burkhardt, T. de Rond, P.Y. Chen, B.S. Moore, Ancient plant-like terpene biosynthesis in corals, Nat. Chem. Biol. 18 (6) (2022) 664-669. [95] S. Kwak, N. Crook, A. Yoneda, N. Ahn, J. Ning, J.Y. Cheng, G. Dantas, Functional mining of novel terpene synthases from metagenomes, Biotechnol. Biofuels Bioprod. 15 (1) (2022) 104. [96] L. Sangeetha Vedula, J.Y. Jiang, T. Zakharian, D.E. Cane, D.W. Christianson, Structural and mechanistic analysis of trichodiene synthase using site-directed mutagenesis: probing the catalytic function of tyrosine-295 and the asparagine-225/serine-229/glutamate-233-Mg2+B motif, Arch. Biochem. Biophys. 469 (2) (2008) 184-194. [97] J.K. Xu, Y. Ai, J.H. Wang, J.W. Xu, Y.K. Zhang, D. Yang, Converting S-limonene synthase to pinene or phellandrene synthases reveals the plasticity of the active site, Phytochemistry 137 (2017) 34-41. [98] A. Di Girolamo, J. Durairaj, A. van Houwelingen, F. Verstappen, D. Bosch, K. Cankar, H. Bouwmeester, D. de Ridder, A.D.J. van Dijk, J. Beekwilder, The santalene synthase from cinnamomum Camphora: reconstruction of a sesquiterpene synthase from a monoterpene synthase, Arch. Biochem. Biophys. 695 (2020) 108647. [99] G.Z. Jiang, M.D. Yao, Y. Wang, L. Zhou, T.Q. Song, H. Liu, W.H. Xiao, Y.J. Yuan, Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae, Metab. Eng. 41 (2017) 57-66. [100] C. Ignea, M. Pontini, M.S. Motawia, M.E. Maffei, A.M. Makris, S.C. Kampranis, Synthesis of 11-carbon terpenoids in yeast using protein and metabolic engineering, Nat. Chem. Biol. 14 (12) (2018) 1090-1098. [101] C. Ignea, M.H. Raadam, A. Koutsaviti, Y. Zhao, Y.T. Duan, M. Harizani, K. Miettinen, P. Georgantea, M. Rosenfeldt, S.E. Viejo-Ledesma, M.A. Petersen, W.L.P. Bredie, D. Staerk, V. Roussis, E. Ioannou, S.C. Kampranis, Expanding the terpene biosynthetic code with non-canonical 16 carbon atom building blocks, Nat. Commun. 13 (1) (2022) 5188. [102] L.C. Cheah, L. Liu, T. Stark, M.R. Plan, B. Peng, Z. Lu, G. Schenk, F. Sainsbury, C.E. Vickers, Metabolic flux enhancement from the translational fusion of terpene synthases is linked to terpene synthase accumulation, Metab. Eng. 77 (2023) 143-151. [103] Z.L. Ye, Y.L. Huang, B. Shi, Z.L. Xiang, Z. Tian, M. Huang, L.L. Wu, Z.X. Deng, K. Shen, T.G. Liu, Coupling cell growth and biochemical pathway induction in Saccharomyces cerevisiae for production of (+)-valencene and its chemical conversion to (+)-nootkatone, Metab. Eng. 72 (2022) 107-115. [104] D.W. Leung, E. Chen, D.V. Goeddel, A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction, Technique 1 (1989) 11-15. [105] M. Furubayashi, M. Ikezumi, J. Kajiwara, M. Iwasaki, A. Fujii, L. Li, K. Saito, D. Umeno, A high-throughput colorimetric screening assay for terpene synthase activity based on substrate consumption, PLoS One 9 (3) (2014) e93317. [106] W.P. Xie, X.M. Lv, L.D. Ye, P.P. Zhou, H.W. Yu, Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering, Metab. Eng. 30 (2015) 69-78. [107] S. Lutz, Beyond directed evolution: semi-rational protein engineering and design, Curr. Opin. Biotechnol. 21 (6) (2010) 734-743. [108] X.Y. Wang, Y.Y. Huang, W.Y. Zhang, K.J. Lv, X.Y. Li, Z.X. Wang, L. Zhang, T. Hsiang, L.X. Zhang, L.M. Ouyang, X.T. Liu, Expanding catalytic promiscuity of a bifunctional terpene synthase through a single mutation-induced change in hydrogen-bond network within the catalytic pocket, Synth. Syst. Biotechnol. 9 (2) (2024) 380-387. [109] L.Q. Su, P. Liu, W.D. Liu, Q. Liu, J. Gao, Q.L. Zhao, K.Z. Jia, X. Sheng, H.W. Ma, Q.H. Wang, Z.J. Dai, Computational design-enabled divergent modification of monoterpene synthases for terpenoid hyperproduction, ACS Catal. 14 (23) (2024) 17699-17715. [110] W.Y. Zhang, X.Y. Wang, G.L. Zhu, B. Zhu, K.T. Peng, T. Hsiang, L.X. Zhang, X.T. Liu, Function switch of a fungal sesterterpene synthase through molecular dynamics simulation assisted alteration of an aromatic residue cluster in the active pocket of PfNS, Angew. Chem. Int. Ed 63 (37) (2024) e202406246. [111] H.C. Xu, J.S. Dickschat, Turning a sesquiterpene synthase into a di- and sesterterpene synthase, ACS Catal. 13 (19) (2023) 12723-12729. [112] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Zidek, A. Potapenko, A. Bridgland, C. Meyer, S.A.A. Kohl, A.J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A.W. Senior, K. Kavukcuoglu, P. Kohli, D. Hassabis, Highly accurate protein structure prediction with AlphaFold, Nature 596 (7873) (2021) 583-589. [113] J. Abramson, J. Adler, J. Dunger, R. Evans, T. Green, A. Pritzel, O. Ronneberger, L. Willmore, A.J. Ballard, J. Bambrick, S.W. Bodenstein, D.A. Evans, C.C. Hung, M. O’Neill, D. Reiman, K. Tunyasuvunakool, Z. Wu, A. Zemgulyte, E. Arvaniti, C. Beattie, O. Bertolli, A. Bridgland, A. Cherepanov, M. Congreve, A.I. Cowen-Rivers, A. Cowie, M. Figurnov, F.B. Fuchs, H. Gladman, R. Jain, Y.A. Khan, C.M.R. Low, K. Perlin, A. Potapenko, P. Savy, S. Singh, A. Stecula, A. Thillaisundaram, C. Tong, S. Yakneen, E.D. Zhong, M. Zielinski, A. Zidek, V. Bapst, P. Kohli, M. Jaderberg, D. Hassabis, J.M. Jumper, Accurate structure prediction of biomolecular interactions with AlphaFold 3, Nature 630 (8016) (2024) 493-500. [114] D. Sasaki, M. Fujihashi, N. Okuyama, Y. Kobayashi, M. Noike, T. Koyama, K. Miki, Crystal structure of heterodimeric hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26 reveals that the small subunit is directly involved in the product chain length regulation, J. Biol. Chem. 286 (5) (2011) 3729-3740. [115] H. Tao, L. Lauterbach, G.K. Bian, R. Chen, A.W. Hou, T. Mori, S. Cheng, B. Hu, L. Lu, X. Mu, M. Li, N. Adachi, M. Kawasaki, T. Moriya, T. Senda, X.H. Wang, Z.X. Deng, I. Abe, J.S. Dickschat, T.G. Liu, Discovery of non-squalene triterpenes, Nature 606 (7913) (2022) 414-419. [116] J.L. Watson, D. Juergens, N.R. Bennett, B.L. Trippe, J. Yim, H.E. Eisenach, W. Ahern, A.J. Borst, R.J. Ragotte, L.F. Milles, B.I.M. Wicky, N. Hanikel, S.J. Pellock, A. Courbet, W. Sheffler, J. Wang, P. Venkatesh, I. Sappington, S.V. Torres, A. Lauko, V. De Bortoli, E. Mathieu, S. Ovchinnikov, R. Barzilay, T.S. Jaakkola, F. DiMaio, M. Baek, D. Baker, De novo design of protein structure and function with RFdiffusion, Nature 620 (7976) (2023) 1089-1100. [117] A. Lauko, S.J. Pellock, K.H. Sumida, I. Anishchenko, D. Juergens, W. Ahern, J. Jeung, A.F. Shida, A. Hunt, I. Kalvet, C. Norn, I.R. Humphreys, C. Jamieson, R. Krishna, Y. Kipnis, A. Kang, E. Brackenbrough, A.K. Bera, B. Sankaran, K.N. Houk, D. Baker, Computational design of serine hydrolases, Science 388 (6744) (2025) eadu2454. [118] Q. Zhang, W.Y. Chen, M. Qin, Y.H. Wang, Z.J. Pu, K.Y. Ding, Y.Y. Liu, Q.F. Zhang, D.F. Li, X.J. Li, Y. Zhao, J.H. Yao, L. Huang, J.P. Wu, L.R. Yang, H.J. Chen, H.R. Yu, Integrating protein language models and automatic biofoundry for enhanced protein evolution, Nat. Commun. 16 (1) (2025) 1553. [119] L.P. Merlicek, J. Neumann, A. Lear, V. Degiorgi, M.M. de Waal, T.S. Cotet, A.J. Mulholland, H.A. Bunzel, AI.zymes: a modular platform for evolutionary enzyme design, Angew. Chem. Int. Ed 64 (27) (2025) e202507031. |
| [1] | Xinzhe Zhang, Aipeng Li, Xiaohan Huang, Qiang Fei. Recent advances in the biosynthesis of natural products from C1 compounds[J]. 中国化学工程学报, 2025, 83(7): 277-285. |
| [2] | Jingting He, Xiaosong Yu, Xin Liu, Lei Qin, Peng Cao, Chun Li. Design of a rhodopsin-based light-driven proton pump to improve acid tolerance of yeast[J]. 中国化学工程学报, 2025, 86(10): 193-199. |
| [3] | Danyang Zhao, Qiangqiang Xue, Yujun Wang, Guangsheng Luo. Controllable synthesis of hydrogen-bonded organic framework encapsulated enzyme for continuous production of chiral hydroxybutyric acid in a two-stage cascade microreactor[J]. 中国化学工程学报, 2025, 77(1): 175-184. |
| [4] | Xueying Zhu, Zhaoyang Zhang, Bin Jia, Yingjin Yuan. Current advances of biocontainment strategy in synthetic biology[J]. 中国化学工程学报, 2023, 56(4): 141-151. |
| [5] | Xiaoyun Hou, Qinghong Shi. Conjugation of Candida rugosa lipase with hydrophobic polymer improves esterification activity of vitamin E in nonaqueous solvent[J]. 中国化学工程学报, 2023, 62(10): 182-191. |
| [6] | Meiru Jiang, Cong Chen, Tao Chen, Chao Zhao, Zhiwen Wang. An international comprehensive benchmarking analysis of synthetic biology in China from 2015 to 2020[J]. 中国化学工程学报, 2022, 48(8): 211-226. |
| [7] | Saboura Ashkevarian, Jalil Badraghi, Fatemeh Mamashli, Behdad Delavari, Ali Akbar Saboury. Covalent immobilization and characterization of Rhizopus oryzae lipase on core-shell cobalt ferrite nanoparticles for biodiesel production[J]. 中国化学工程学报, 2021, 37(9): 128-136. |
| [8] | Xueping Liu, Ping Xue, Feng Jia, Dongya Qiu, Keren Shi, Weiwei Zhang. Tailoring polymeric composite gel beads-encapsulated microorganism for efficient degradation of phenolic compounds[J]. 中国化学工程学报, 2021, 32(4): 301-306. |
| [9] | Yanfeng Liu, Xiaomin Dong, Bin Wang, Rongzhen Tian, Jianghua Li, Long Liu, Guocheng Du, Jian Chen. Food synthetic biology-driven protein supply transition: From animal-derived production to microbial fermentation[J]. 中国化学工程学报, 2021, 29(2): 29-36. |
| [10] | Yang Zhang, Jing Yu, Yilu Wu, Mingda Li, Yuxuan Zhao, Haowen Zhu, Changjing Chen, Meng Wang, Biqiang Chen, Tianwei Tan. Efficient production of chemicals from microorganism by metabolic engineering and synthetic biology[J]. 中国化学工程学报, 2021, 29(2): 14-28. |
| [11] | Wenqiang Li, Wentao Sun, Chun Li. Engineered microorganisms and enzymes for efficiently synthesizing plant natural products[J]. 中国化学工程学报, 2021, 29(2): 62-73. |
| [12] | Bekir Engin Eser, Yan Zhang, Li Zong, Zheng Guo. Self-sufficient Cytochrome P450s and their potential applications in biotechnology[J]. 中国化学工程学报, 2021, 29(2): 121-135. |
| [13] | Han Zhang, Yunpeng Bai, Ning Zhu, Jianhe Xu. Microfluidic reactor with immobilized enzyme-from construction to applications: A review[J]. 中国化学工程学报, 2021, 29(2): 136-145. |
| [14] | Mengjiao Xu, Zhuotao Tan, Chenjie Zhu, Wei Zhuang, Hanjie Ying, Pingkai Ouyang. Recent advance of chemoenzymatic catalysis for the synthesis of chemicals: Scope and challenge[J]. 中国化学工程学报, 2021, 29(2): 146-167. |
| [15] | Junyang Xu, Yanjun Jiang, Liya Zhou, Li Ma, Zhihong Huang, Jiafu Shi, Jing Gao, Ying He. Nickel-Carnosine complex: A new carrier for enzymes immobilization by affinity adsorption[J]. 中国化学工程学报, 2021, 38(10): 237-246. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001993号 
